
2024-04-22, 13:49EDDSlideshow

Page 1 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

EDDSlideshow

Example-Driven Development
Example-Driven Development is superficially like Test-Driven Development, where
you drive development by constructing tests methods that return example objects. It
sounds simple, but it actually changes the development process in several
fundamental ways.

The Trouble with TDD
With TDD, you develop code by incrementally adding a test for a new feature, which
fails. Then you write the “simplest code” that passes the new test. You add new tests,
refactoring as needed, until you have fully covered everything that the new feature
should fulfil, as specified by the tests.

Example-DrivenDevelopment
oscar.nierstrasz@feenk.com



2024-04-22, 13:49EDDSlideshow

Page 2 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

But: Where do tests come from? When you write a test, you actually have to “guess
first” to imagine what objects to create, exercise and test.

How do we write the simplest code that passes? A test that fails gives you a debugger
context, but then you have to go somewhere else to add some new classes and
methods.

What use is a green test? Green tests can be used to detect regressions, but
otherwise they don't help you much to create new tests or explore the running
system.

With Example-Driven Development we try to answer these questions.

What's an Example?
An example method is just a test method that happens to return the object being
tested. Through this simple change, instead of a passing test simply being green, we
get back an object that we can inspect, explore, and reuse for various purposes.



2024-04-22, 13:49EDDSlideshow

Page 3 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

An example of an example ...
Here we see a simple example of an example method. It is annotated with a
<gtExample> pragma to flag it as an example.

Like any test, it has a setup, which in this case creates a game object. We check some
assertions, in this case perform no further operations, and then we return the object
under test.

This allows not only to carry out the tests, but also to inspect the result.



2024-04-22, 13:49EDDSlideshow

Page 4 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Explain the method. Inspect the result. Play the game. Explore the views.

Composing examples
Once we have an example, we can also use it as a setup for another example.
chooseMatchingPair is another example method that starts with fixedGame as its
setup.

As in a conventional test, we can check some preconditions, perform one or more
operations, and then check some postconditions. The difference, again, is that we
return the object under test, so we can explore it. We can also reuse it as a setup for
yet another example, in this case, playToEnd.

If we switch to the Examples map view, we can see all the dependencies between the
examples.



2024-04-22, 13:49EDDSlideshow

Page 5 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Browse the chooseMatchingPair example. Open the fixedGame code bubble.
Inspect the result. Browse senders of chooseMatchingPair. Browse playToEnd.
Explore the Examples map .

Why examples?
What are example methods good for?

As we have seen, examples make dependencies between tests explicit by reusing
examples as setups for other examples, thus forming a hierarchy of examples.

Best practice in test design supposedly should avoid dependencies between tests,
but studies have shown that this practice instead leads to implicit dependencies due
to duplicated code in test setups. This in turn leads to cascading failures due to the
same setups being repeated in numerous tests. By factoring out the commonalities as
examples, the duplication is removed, and cascading failures are avoided.

A further benefit is that examples can be used in live documentation, and, as we shall
see, examples support an exploratory approach to test-driven development, that we
call example-driven development, or EDD.



2024-04-22, 13:49EDDSlideshow

Page 6 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Modeling prices
Let's work through an example where we want to model prices for goods, that may be
discounted by fixed amounts, or percentages, or even combinations of different types
of discounts.



2024-04-22, 13:49EDDSlideshow

Page 7 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Money classes
To simplify our task, we assume that we already have classes that model different
amounts of money, such as 42 € or 10 USD.

An amount of money is always in a currency such as euros or US dollars. A bag of
money consists of amounts of mixed currencies. A zero amount of money doesn't
have a currency.

All these classes have a common abstract Money superclass for shared behavior.



2024-04-22, 13:49EDDSlideshow

Page 8 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Inspect the 42 euros snippet. Inspect the 42 euros + 10 usd snippet. Click on the
GtTZeroMoney class. Click on the GtTMoney class.

Money examples
The money classes are heavily covered by examples, which are essentially unit tests
that also return example objects.

This means that a passing test is not just green, but also returns an object that can be
explored, reused as a setup for another example, or embedded into live
documentation. Unlike tests, however, examples don't come “first” but they are
extracted during the example-driven development process.



2024-04-22, 13:49EDDSlideshow

Page 9 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Run all the examples. Inspect the first example. Open the code bubbles to see how
they are composed. Go to the Examples map to show all the dependencies.

Introducing a Concrete Price
Just like we have a hierarchy of Money classes, we expect to end up with a hierarchy
of Price objects, including an abstract root class, a concrete, fixed price, and several
kinds of discounted prices. Instead of designing this hierarchy up-front, we'll develop it
incrementally, driven by examples.

We'll start with an example of a concrete (as opposed to an abstract) Price object.



2024-04-22, 13:49EDDSlideshow

Page 10 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Start from an object
Instead of starting by imagining and writing a test case as an example method, we
start by creating an instance of the class we need. We first simply ask how we want to
create our concrete instance of a price, and we write that code in a snippet.

Neither the class nor the constructor exist, so we create them as fixit operations. Now
we have a first concrete Price object!



2024-04-22, 13:49EDDSlideshow

Page 11 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Create the ConcretePrice class as a fixit. Give it the EDDPrices package, the Model
tag, and a money slot. Create the accessors. Change the argument of money: to
aMoney. Inspect the result. Inspect its money slot.

Create a factory method
We would like to be able to create a price object by sending asPrice to a Money
instance.

We start by inspecting the Money instance. We prototype the code to create the Price
instance. We try it out. And we extract the factory method. We change the method to
be an extension from the EDDPrices package.

Now we can simply write 100 euros asPrice.



2024-04-22, 13:49EDDSlideshow

Page 12 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Inspect the money. Open the playground. Code up ConcretePrice new money:
self; yourself Inspect the result. Extract the asPrice method. Browse the new
method. Change the category to *EDDPrices. Go back to the page and change the
code to 100 euros asPrice and inspect it.

Adding a view
Our new Price object has only an ugly generic view, but its money slot has a nice
view we could reuse.

We go to the Meta view of the Price object and add a new view method that forwards
itself to the Details view of its money slot.

A view is just a method that takes a view object as an argument, has a <gtView>
pragma, and uses the view API to create the view we want, in this case a forward
view.

We set the title of the view to Money, the priority to 10 so it appears early in the list of
views, the object we want to forward to is the money slot, and the view is its
gtDisplayFor: view.

The moment we commit the view code, the view becomes available.



2024-04-22, 13:49EDDSlideshow

Page 13 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Inspect the price object. Inspect the money slot and view the Details view code.
Copy the method name. Go back to the Price inspector and switch to the Meta view.
Add a forwarding gtMoneyFor: method. Show the new view.

Extracting an example
At this point it looks like we have a nice example for testing, so let's extract it as an
example.

We introduce a new class to hold our examples, and give the example a suitable
name.

Note that the extracted example method has a <gtExample> pragma, and unlike a
usual test method, it returns an instance.



2024-04-22, 13:49EDDSlideshow

Page 14 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Select all the code, right-click and Extract example Set the receiver to PriceExamples
and the selector to hundredEuros. Choose EDDPrices as the package and Examples
as the tag. Accept the refactoring. Inspect the result. Browse the code bubble.

Adding assertions
We now have an example, but we aren't testing anything yet.

Rather than directly adding tests to the example method, let's explore first. We expect
that a price object should equal another price object with the same money value. We
see that this fails.

Let's have a look at the = method. It's testing for object identity. Now let's see what
happens if we directly compare the money slots. This passes. We see that Money has
implemented =, so we should do the same.

We have the code we want right here, so let's extract it. Now we can go back to the
example and add a test.



2024-04-22, 13:49EDDSlideshow

Page 15 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Inspect the example and open the playground. Evaluate other := 100 euros
asPrice. self = other and see it fails. Open the code bubble for = (alternatively
search for = in the Meta view). Evaluate a new snippet self money = other money
and see it passes. Browse the = method of money and see it has been overridden.
Rewrite the hundredEuros example, adding the assertion. Use an Extract temporary
refactoring to assign the example expression to a variable price, and then express
the assertion over that.

Price Examples
After a number of iterations we end up with something like this, with a hierarchy of
examples covering test cases for prices.



2024-04-22, 13:49EDDSlideshow

Page 16 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Run all the examples. Show the longest chain, i.e., for
displayOfConcretePriceDiscountedByMoneyAndDiscountedByPercentage and
inspect the result. Show the Overview with the price composition.

EDD in a Nutshell
Summing up, instead of starting by writing a test, we first create a live object to
explore.

We prototype any behavior in the playground of the live object, and then extract
methods that work. We create views that explain what is interesting about the object.
We extract interesting instances as example methods of a dedicated examples class.
We prototype tests in the playground of the live example, before adding them as
assertions to an example. We reuse the examples as setups for new examples. We
iterate until we're done!



2024-04-22, 13:49EDDSlideshow

Page 17 of 17file:///Users/oscar/Desktop/78635/GT-2024-04-22@08h35/EDDSlideshow-HTML/index.html

Powered by Lepiter | Privacy Policy

https://lepiter.com/
https://feenk.com/privacy

