
2024-03-19, 12:25SPLPetitParserSlideshow

Page 1 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

SPLPetitParserSlideshow

Building composable parsers with
PetitParser
This slideshow is for the PetitParser lecture of the compiler construction course at
UniBE.

What is PetitParser?
PetitParser is a parsing framework that combines several related parsing
technologies: scannerless parsers, parser combinators, parsing expression grammars
and packrat parsers.

The core idea is that parsers can be composed to form more complex parsers. That

Buildingcomposableparsers
withPetitParser

https://seg.inf.unibe.ch/teaching/current/cc/
https://scg.unibe.ch/research/helvetia/petitparser

2024-03-19, 12:25SPLPetitParserSlideshow

Page 2 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

makes it convenient to develop and debug parsers.

In this example the number parser is composed of a #digit parser, and converts the
parsed string to a number. The addition parser is composed of number and +
parsers and performs the addition.

SPL Grammar
SPL is a simple, structured programming language with a compact grammar.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 3 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

An SPL example
SPL does not have procedures or objects, but it has loops, however, so it is still
Turing-complete.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 4 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Parsing tokens
PetitParser is a scannerless parser.

This means we do not have a separate scanner for individual tokens based on regular
expressions, but instead we use parsing expressions for tokens as well.

We'll introduce parsing expressions for all of the SPL tokens, namely Boolens,
integers, floats, strings, keywords and identifiers.

Parsing Booleans
To parse a character or a string, we just send it the message asParser.

Here we create two parsers, one which will parse the string 'true', and the other
'false'.

We compose them with the ordered choice operator, /, to parse either true or false.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 5 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Parsing Integers and Floats
PetitParser makes use of numerous operators, or combinators to compose parsing
expressions.

The optional operator creates a new parser that will parser either zero or one token.
The plus operators will parse ` or more tokens.

The not operator does not consume a token, but simply fails if it sees the token,
otherwise it succeeds. Here we make sure that an integer will only be recognized if
there is no trailing period. If we add a period, the parse will fail.

Parsing floats is similar, but in this case we do want the dot to be parsed.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 6 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Parsing Numbers
We can now combine the parsing expressions to recognize numbers as either
integers or floats.

Note that the choice operator is strictly ordered. It will first attempt to parse an integer,
and only if that fails will it try to parse a float.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 7 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Parsing Keywords and Identifiers
Here we use the not combinator to make sure we don't accidentally recognize the
token and in identifiers such as android or andy.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 8 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Parsing grammar rules
Now we have parsing expressions for all the SPL tokens except strings. We can
proceed to the actual grammar rules.

The trim operator makes it easy to get rid of whitespace following a token. The end
operator will match the end of input, making sure that everything is parsed.

Debugging parsers
Here's a slightly buggy version of our print statement parser that fails with this input.

The result is a PetitParser “Failure” object that shows us the execution trace of the
parser at the point where it failed. If we inspect this, we can walk through the tree to
see how far it got.

We discover that after recognizing the “print” string, it expects a quotation mark for the
start of a string, instead of whitespace. We fix this by adding the missing trim to the
print parser.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 9 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Prototyping the SPL grammar parser as a
script
We continue to iteratively prototype the various SPL grammar rules until we have a
complete grammar implemented as PetitParser parsing expressions.

Note that we must take special care with recursive grammar rules, as we cannot use
parsers that have not yet been defined.

To break the recursion, the first time we introduce a recursive parser, such as
expression, we define it as an instance of PP2UnresolvedNode. Then, once we have
defined the other parsers that it needs for its own definition (and that use it
recurseively, we redefine it use def:.

We can see that expression is later redefined as term.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 10 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Extracting a parser class
Once we have a working script, we can apply a refactoring transformation to turn it
into a class.

We initialize any recursive parsers, and then create a self-contained script that does
not refer to any outside classe sor variables. We can right-click inside the script to
Extract PetitParser class.

This creates a class in which each parsing expression is defined as a method, and its
value is cached as an instance variable.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 11 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Writing parser tests
We write tests to ensure that each parsing expression and every grammar rule works
as expected.

It's good practice to subclass PP2CompositeNodeExamples, a class that offers some
utilities for testing parsers. In this example we simply test that a small program source
can be parsed by the program parser, but not by declaration or statement.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 12 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Building the AST with parser actions
The parser we have created just recognizes SPL programs, but doesn't perform any
actions. Now we'd like to build an abstract syntax tree for the programs that are
recognized.

In our very first example we saw that actions can be specified with the ==> double
arrow operator, which points to a block (i.e., an anonymous function) that can
transform the parsed data into something useful. We'll define a subclass of our basic
grammar parser that decorates each parsing expression with an action. Note that the
SPLParser printStmt method inherits printStmt from the superclass and adds the
action.

For each grammar rule we'll create an instance of an SPLNode subclass that will store
the interesting bits in the instance variables of the AST node. In this case we create
an SPLPrintStatement node and store the second part that was parse, namely the
expression to be printed.

Now when we parse a bit of code with our refined parser expressions we get a proper
AST node instead of an array of data.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 13 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

The SPL AST hierarchy
We introduce an AST node class for every different syntactic element of the SPL
grammar. Each leaf node can pretty-print itself, and can also perform an interpretation
step.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 14 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

SPL Semantics
We don't just want to parse SPL programs, but we also want to execute them.

This can be done in numerous ways. We could generate bytecode for a virtual
machine for an existing language, like Java, or we could directly compile SPL
programs to machine code.

Another approach is to interpret SPL programs by transforming them, step-by-step, to
simpler programs. This approach is called Structural Operational Semantics . We'd
like to see each step of the execution, so we use what is called “small step”
semantics.

SPL programs don't take any input except what is specified in the source code itself.
Programs have variables, so we need to track the bindings of variables to values, and
we need to track any output that is produced. That means that the context of a
running SPL program consists in three parts: (1) the current “continuation”, i.e., the
“rest of the program” to be executed, (2) the environment of variables and their
values, and (3) the output so far.

When we start executing, the continuation is the full program, the environment is
empty, and so is the output.

When the program ends, the continuation is empty (the empty program), the
environment contains the set of all variables and their final values, and the output is
the final list of everything that has been printed.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 15 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

The semantics of printing
Every SPL AST node has a stepInContext: method that allows it perform one
reduction step, and return a new, reduced AST.

Let's just look at one of these, namely that of the print statement. A print statement
prints the value of an expression. The reduction step, then, should check if the
expressions value is already known, in which case we can just print it. If not, we have
to perform a reduction step.

In the first case we return the AST for the reduced expression, which will be discarded
in the next step, and in the second case, we return a new print statement AST with
the expression redcued by one step. In either case we make some small progress.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 16 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Running an SPL program
To run an SPL program, we create a new context holding the AST of the program as
its continuation, and an empty environment and output. If we inspect this object, we
can then step through the execution, and also explore the history of all the reductions
steps.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 17 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Fibonacci in SPL
Here's a Fibonacci program in SPL.

Since SPL doesn't have procedures, we cannot define a Fibonacci function, but we
can make it into a program. Also SPL programs don't take arguments, so we have to
encode the argument as a variable in the first line.

The algorithm simply keeps track of the last two Fibonacci values, printing out each
new value computed, and terminating when we reach the required number of
iterations.

Notice how the semantics of the while statement has been implemented by unfolding
the while into an if statement where the “then” part contains one iteration of the body
followed by another copy of the while loop.

2024-03-19, 12:25SPLPetitParserSlideshow

Page 18 of 19file:///Users/oscar/Desktop/GT/GT-2024-03-19@10h32/SPLPetitParserSlideshow-HTML/index.html

Coda
You can explore the SPL case study for yourself by downloading Glamorous Toolkit
from gtoolkit.com and going to the page “PetitParser SPL case study” in the GT Book.

https://gtoolkit.com/

