
Oscar Nierstrasz
Software Composition Group

scg.unibe.ch

FASE 2016 — Eindhoven, NL

The Death of
Object-Oriented

Programming

Invited talk at FASE 2016, ETAPS 2016: 2-8 April 2016,
Eindhoven, The Netherlands.
A preprint of the companion paper is available online:

http://scg.unibe.ch/scgbib?query=Nier16a

The trouble with
OOP

3

OOP promised us graceful transition
from domain models to implementation

Java

XML

SQL
…

JSON

PHP
Instead modern
applications consist of
a heterogeneous pile of
different technologies

In the 1980s, one of the selling points of OOP was that object-
oriented models could be used consistently from domain
modelling, through analysis and design, all the way through to
implementation.
Somewhere along the way this vision has been lost, and now we
see modern software systems built from a heterogeneous sludge
of different programming languages, configuration languages and
domain-specific languages addressing both application and
technical domains.

44

and Code

There is a gap
between Models

4

Important aspects of the model are often missing in the code. This
makes it harder to make sure that changes are consistent.
Architecture and particularly architectural constraints are
typically not explicit.
The programming language may get in the way — boilerplate
code can obfuscate intent. Dependencies are often hidden, so it
can be unclear what will be the impact of a change. Furthermore,
the development context and project history is not part of the
code at all.

5

Developers spend more time
reading than writing code

Especially with OO, where the code does not reflect run time
behaviour well, more time is spent reading than writing, to
understand code and to understand impact of change.
IDEs do not well support this reading activity, since they focus on
PL concepts, like editing, compiling and debugging, not
architectural constraints, or user features.

6

7

Yet mainstream IDEs are
basically glorified text editors

Can you guess from this view the application domain of the code?
IDEs offer only general-purpose tools for editing and managing
code, and are typically unaware of the application domain.

8

Software inevitably changes …

But our programming
languages and
development tools
and methods pretend
the world is frozen!

Few, if any mechanisms enable change

Types, modules, namespaces all assume a frozen, unchanging
snapshot of the world. Mainstream programming languages offer
no specific mechanisms to enable software evolution.
(Deprecation limits the effects of change, but does not especially
enable it.)

9

Outlook: Programming
is Modeling

Instead of having disconnected models and code, or even
transformations between models and code, we should consider
code as being the models of concern.

Roadmap

Bring Models
Closer to Code

12

What exactly is “the OO paradigm”?

The OO Paradigm is commonly (mis-)represented as:
programs = objects + messages

Or even:
programs = objects + classes + inheritance

Although technically correct, this misses the point.
OOP was invented (by Nygaard and Dahl) in the early 60s out of
a need to program real-world simulations. The mechanisms of
objects, messages, classes and inheritance realised in the Simula
language (an extension of Algol) enabled them to develop the
simulations they wanted. Only later did programmers realise that
simulation — as a paradigm — was more generally useful in
software engineering.

13

14

“Design your own paradigm”

Object-oriented programming is really about designing your own
paradigm. You decide what domain abstractions are important for
your application, and you use them to build your system.
Every OO program is a simulation of a virtual world, in which
the objects you have imagined interact to realize some specific
goals.

15

For an OOPL to succeed
as a modelling language,
(code) models should be

queryable and manipulable

What would this
mean in practice?

Developers continuously ask questions about the code they work
with, but don’t have good tools to formulate these questions.
If programming languages are to succeed as modeling languages,
the models they are used to construct must be comprehensible,
analyzable, queryable and manipulable.

16

Smalltalk

Navigation

Metrics

Querying

Grouping

Smalltalk

Java

C++

COBOL

…

MSEExternal
Parser

Roassal

Orion DSM ...BugMap

Extensible meta model

Model repository

Moose is a platform for
software and data analysis

www.moosetechnology.org

http://www.moosetechnology.org

Moose is a platform for modeling software artefacts to enable
software analysis. Moose offers a number of core features to
navigate models, query them and analyze them. Numerous
analysis and visualization tools have been developed on top of
Moose.
Moose has been developed for well over a decade. It is the work
of dozens of researchers, and has been the basis of numerous
academic and industrial projects.

www.moosetechnology.org

17

The figure shows the following visualisations:
First row: System complexity (class hierarchy decorated with metrics) - Clone
evolution view
Second row: Class blueprint (shows relationships between methods and
attributes within a class) - Topic Correlation Matrix - Distribution Map (for
topics spread over classes in packages)
Third row: Hierarchy Evolution view (shows histories of classes) - Ownership
Map (shows ownership of artefacts over time)

Although Moose is a powerful and expressive platform, it still
requires that models be imported from a code base. The close
integration of the development environment and analysis tools is
still missing.

18
Renggli et al., Embedding Languages without Breaking Tools. ECOOP 2010

How to make tools
understand DSLs?

Domain-specific languages help to maintain the link between
models and code.
Unfortunately such language extensions typically do not play
well with the IDE.
Here we see SQL and regexes as extensions to Smalltalk, with
syntax highlighting integrated into the development tools.

Renggli et al., Embedding Languages without Breaking Tools. ECOOP 2010

19

Outlook: models = code

Rather than modeling code, we need the code to be the model.
(This Lego town is both a model of a town, and it is a toy town at
the same time.)
Bertrand Meyer says he was long puzzled by the fascination with
modeling notations and CASE tools, until he realized one day
their attraction: “Bubbles and arrows don’t crash.”

Exploit domain
models in the IDE

21

Conventional debuggers
just offer an interface to
the run-time stack.

The debugger is just one example of a classical IDE tool that
knows nothing about your specific application domain. It just
offers generic functionality that often does not fit well the needs
of a particular domain.

22

Specific Models

Mind the abstraction gap

Generic Debugger

Andrei Chis et al. The Moldable Debugger: A Framework
for Developing Domain-Specific Debuggers. SLE 2014.

Moldable Tools

Domain-specific Debuggers

The Moldable
Debugger

Debugging
Widget

Debugging
Action

*

Activation
Predicate

Classical development tools like browsers, debuggers and
inspectors are generic and do not address the needs of specific
domains.
The Moldable debugger can be easily adapted to different
domains, such as event-driven computation, GUI construction
and parser generation.

Andrei Chis et al. The Moldable Debugger: A Framework for Developing
Domain-Specific Debuggers. SLE 2014.

PetitParser

identifier
letter , (letter / digit) *

letter *

,

/

letter digit

PetitParser is a PEG-based framework for developing parsers
composed of objects.

24

A conventional debugger knows nothing about the parsing
domain. Here we see the Pharo Smalltalk debugger with a view of
the run-time stack at the left, the source code of the selected
method at right, and the currently accessible local variables at the
bottom.

25

A moldable PetitParser debugger knows which objects are
parsers, knows where we are in the input, and can show us which
parser object is currently active. Instead of being forced to
laboriously step through methods to find what we are looking for,
we can step directly to the next grammar rule of interest.

Next production

Next parser

Production(aproduction)

Next failure

Stream position(anInteger)

Stream position changed

26

Debugging widgets Debugging actions

Debugging
Widget

Debugging
View

Debugging
Action

Debugging
Session

Debugging
Predicate

Primitive
Predicate

HighLevel
Predicate

**
*

Activation
Predicate

Domain-specific extensions are
composed from debugging
widgets and actions, and
triggered by contextual
debugging predicates.

Moldable debuggers are built up from debugging widgets and
debugging actions. The moldable debugger uses activation
predicates to know which debuggers can currently be activated,
allowing the developer to switch between debuggers without
starting a new session.

Petit Parser Events

SUnit Glamour

27

Moldable debuggers have been built for several different domains
already. The event-based debugger supports event-driven
programming (which does not map well to a stack).
The SUnit debugger knows about and supports the notion of tests.
The Glamour debugger knows about the domain of flow-based
model browsers.

New debuggers are cheap

Although some expertise is required to build a new debugger, the
development effort for a new debugger is tiny.

29

Outlook: domain-aware IDEs

We have been exploring how to apply the ideas behind the
moldable debugger to other domains, such as object inspection
(the moldable inspector) and querying (the “moldable spotter”).
In the long run, we imagine a complete development environment
that is easy to adapt (mold) to various technical and application
domains with low effort.

Link code to the
ecosystem

31

The architecture

... is not in the code

Although the architecture is one of the most important artifacts of
a system to understand, it is not easily recoverable from code.
This is because: (1) a system may have many architectures (eg
layered and thin client), (2) there are many kinds of architecture
static, run-time, build etc), (3) PLs do not offer any support to
encode architectural constraints aside from coarse structuring and
interfaces.

32

“What will my code
change impact?”

Large software systems are so complex that one can never be sure
until integration whether certain changes can have catastrophic
effects at a distance.
We somehow need to establish the link between the code and the
(hidden) architecture.

What is SA in the Wild?

Andrea Caracciolo, et al. How Do Software Architects Specify
and Validate Quality Requirements? Software Architecture 2014.

33

The theory seems to suggest that SA is mainly about structure and
dependencies. Our experience with actual projects suggested that
the truth might be different.
We carried out a couple of empirical studies, first a qualitative
one to understand what is SA in the wild, and then a second,
quantitative one to see to what extent various kinds of constraints
appear in practice.

Andrea Caracciolo, et al. “How Do Software Architects Specify and Validate
Quality Requirements?” Software Architecture 2014.

34

Impact of SA
constraints

constraint Impact (1-5)
availability 4.2
response-time 4.0
authorization 3.9
authentication 3.6
communication 3.4
throughput 3.4
signature 3.4
software infrastructure 3.3
data integrity 3.3
recoverability 3.1
dependencies 3.1
visual design 3.0
data retention policy 3.0
hardware infrastructure 2.9
system behavior 2.9
data structure 2.9
event handling 2.9
code metrics 2.7
meta-annotation 2.6
naming conventions 2.6
file location 2.5
accessibility 2.5
software update 2.2

In the quantitative study we asked developers how important
different kinds of architectural constraints were for their projects.
Interestingly, in the top ten, there were significantly more user
constraints, like availability (in green) than developer constraints
(in blue). Dependencies were only halfway down the list.

Automated Validation is not Prevalent

naming conventions
file location

hardware infrastructure
software update
recoverability
dependencies

signature
software infrastructure

data structure
event handling

availability
communication
accessibility

meta-annotation
code quality

visual design
data integrity
authentication

data retention policy
response-time

throughput
authorization

0% 25% 50% 75% 100%

Avg: 40%

Quality requirements are only checked 40% of the time.

Formalization is not Prevalent

software update
hardware infrastructure

accessibility
recoverability

software infrastructure
authentication

data retention policy
throughput

response-time
availability

file location
code metrics
visual design

communication
data integrity
authorization

event handling
naming conventions

meta-annotation
data structure

signature
dependencies

0% 25% 50% 75% 100%

Avg: 20%

ER, UML + profile
Regex, BNF
annotations

…

On average QRs are formally specified only 20 % of the time.
Practitioners use different formalisms: from UML+profile to
regex.
One of the key problems is usability. Where tools exist,
functionality is limited and usability is poor. A host of different
notations are needed to use these tools.

Dicto — a unified ADSL

Andrea Caracciolo, et al. Dicto: A Unified DSL
for Testing Architectural Rules. ECSAW '14.

37

Dicto offers a unified specification language as a front end to
various tools. A generic DSL captures the basic structure of most
architectural constraints. The language is adapted to different
needs, and is used to generate the actual specification needed as
input to a given tool.
The tool has been applied to a variety of domains and has been
validated in a number of industrial case studies.

Andrea Caracciolo, et al. “Dicto: A Unified DSL for Testing Architectural
Rules.” ECSAW '14.

38

Outlook: link the code to
its environment

Linking code to architecture is just one example.

Conclusion

