7,

UNIVERSITAY
ArAN

\

Invited talk at FASE 2016, ETAPS 2016: 2-8 April 2016,
Eindhoven, The Netherlands.

A preprint of the companion paper 1s available online:
http://scg.unibe.ch/scgbib?query=Nierl 6a

The trouble with

OOP promised us graceful transition
from domain models to implementation

Instead modern sl UM Java
applications consist of
a heterogeneous pile of
different technologies

In the 1980s, one of the selling points of OOP was that object-
oriented models could be used consistently from domain
modelling, through analysis and design, all the way through to
implementation.

Somewhere along the way this vision has been lost, and now we
see modern software systems built from a heterogeneous sludge
of different programming languages, configuration languages and
domain-specific languages addressing both application and
technical domains.

There Is a ¢
between IV

Important aspects of the model are often missing in the code. This
makes 1t harder to make sure that changes are consistent.
Architecture and particularly architectural constraints are
typically not explicit.

The programming language may get in the way — boilerplate
code can obfuscate intent. Dependencies are often hidden, so it
can be unclear what will be the impact of a change. Furthermore,
the development context and project history 1s not part of the
code at all.

Developers spend more time
reading than writing code

Especially with OO, where the code does not reflect run time
behaviour well, more time 1s spent reading than writing, to
understand code and to understand impact of change.

IDEs do not well support this reading activity, since they focus on
PL concepts, like editing, compiling and debugging, not
architectural constraints, or user features.

Flu, n Development - NbBu ndleTes 1| va - EC I;-.- SDK

Eile Edit Source Refactor Navigate Search Project Bun Window Help
_rﬁ-naw- O QA | BHEG O |G |[JIB|AAA & ¥ w o @ 7 [Plug-in Dev.. >
Plug-lns[=\ Hh} COM.aramco.powers. .] =) powers2gui product] [J) GenericBranch Java [3) NbBundleTestjava 3 . — B“ 5% Outline 53 — =i
& D @ =% 7| 27import comaramco. Baw;rgé uNbBundle; : |Wwew?”
© 1= COm.aramco.powers2 ui - gg joe # com.aramco.powers2.uitest
v §Bsrc 30 * Tests the behavior of utlity class NoBundle. b “= import declarations
v com.aramco.powersZ ui 31 * Tests need to run against the background of a known set of objects. = ©, NbBundleTest
b [J] AppActionBarAdvisor java gg : This set of objects is called a test fixture. (Refer to hitp/Avwaw junit.org) © * main(String[))
b () Application java y 33 * @author Guanglin Du (dugl@petrochina.com.cn), Software Engineering Center, RIPED, PetroChina » lele;dshn_gSesourceo
b [J) AppWorkbenchAdvisor java 95 +/ @ testNonExistingResource()
b 4) AppWorkbenchWindowAdvis 36 public class NbBundleTest {
b (5] ICommandids java gg -
b GiMessageropupAction jave 33 * Uses the Bundle.properties to test NbBundie’s behavior.
b [J] NoBundie java an
b 4] OpenViewAction java 41 @Test
b 1] Perspective java 42 publlc void lestExlsUngReSOche() {
b [3) PluginConstants java 43 String s1 = Nb_Bmdle.g\eMemge(ProJeq.Vlew.class, "add_new_pwvi_sat");
y 44 assertEquals"Add New PVT or SAT table”, s1);
b [J) PowersZPlugin java 45)
b 4] ProjectView java 46
b [4) TableEditorjava 47 /:‘ . .
b [3) TableViewjava | jg ‘/Uses the Bundle.properties to test NbBundie's behavior.
|5 Bundie properties 50 @Test
b 8 com.aramco.powers2 ui.action 51 public void testNonExistingResource() {
b j8 com.aramco.powers2 ulforms 52 String s1 = Nmedle.geMe..sage(ProJeclVIew.class, "non-existing”);
b i com.aramco.powers2 ul.projectr 23) assertEquals(“enom-existing’, s1);
b & com.aramco.powers2. uitable 55
b 8 com.aramco powersZ uivizards S e
b jH com.aramco.powers2 xyplot date 57 *Method main to run this class directly.
v Siest 58 * Can be run this way also on a command line:
59 * java orgjunitrunner.JUnitCore samples.Simple TestFixture
b j§ com.aramco.powers2 internal ui. 60 %
= i com.aramco.powers2 uitest 61 public static void main(String args(]) {
0l NoBundieTest java 62 JUnitCore.main{"com.aramco.powers2.u.util test NbBundleTest");
b £ com.aramco.powers2 xyplot dats 63} —
b & samples 65 E
b = JRE System Library [jdk1.5.0_06] [« Tyl
: :::3;': Sk Eror Log Tasks Problems Console Properties Search gu Junit 83 $ ¢a"E QAR mE-T"O
b G doc Finished after 0.129 seconds
b @icons Runs: 272 @ Errors: 0 @ Failures: 0 |
b > META-INF
i} build properties b . com.aramco.powers2 uilest NbBundleTest [Runner: JUnit 4) = Failure Trace &
|} com.aramco.powers2 ul.projectmoc T
] IPlotDataModel violet -
|| plugin_customization.ini —
4 4

| o°
m. M O N .« 4> |elemome - Kongueror

. Plug-in Development - Nbb

Yet mainstream IDEs are
basically glorified text editors

Eile Edit Source Refactor Navigate Search Project Bun Window Help
(FE& 30 Q@ BHG- | O 4B ARA K H e e [| 4+Plug-in Dev.. >
ge Explorer Plug-ins. = B[&3 com.aramco.powers =) powers2gul product [J) GenericBranch java [3) NbBundleTestjava 53 - % = B | 5= outline 3 ~|=
o T e =
< - S import com.aramco.powers2.u.NbBundle; HR o W7
hd ‘,:Jcom aramco.powers2 ui 7‘i e # com.aramco.powers2 uitest
v §Ssrc avior of wil p “= import declarations
com.aramco.powers2 ui run agai bjects. = @, NbBundleTest
b [J) AppActionBaradvisor java objects is called at unit.org © *main(String[])
J) Application java 5 a BIBER A testExistingResource()
e 1 * @author Guanglin Du (dugl@petrachina.com.cn), Scftware Engine: -enter, RIPED, PetroChina R Ol
p 1] AppWorkbenchAdvisor java Ny ~ - = @ testiNonExistingResource()
b (3] AppWorkbenchWindowAdvis Epublic class NbBundleTest {
p 3] ICommandids java
b [J) MessagePopupAction java Y s
4] MessagePopup o * Uses the Bundle.properties to te \bBundle’s behavior
b 5] NoBundle java 4 .
p 4] OpenViewAction java 1 aTest
b 1) Perspective java 17 public void testExistingResource() {
= 1 i = o jectvi = ' pA s
b [3) PluginConstants java String 5_1 Nlﬁmd!cga(Mes@agq[Pro;eq}|ew.c|ass, add_new_pwt_sat”);
assertEquals("Add New PVT or SAT table”, s1);
p 1] PowersZPlugin java
b J] ProjectView java
b [4) TableEditorjava "H .
* Uses the Bundl . s 1o test NbSundle's bet
b [3) TableViewjava ses the Bundle.properties to test NbBundie's behavior
|5] Bundie.properties
COm.aramco.powers2 ui.action | public void testNonExistingResource() {
COm.aramco. powers2 ul forms Y String s1 = NbBundle.getVessage(ProjectView.class, "non-existing”);
b 1 com.aramco powers2 ul.project asserttquals("%nom-existing’, s1);
b £ com.aramco.powers2 uitable
b j8 com.aramco.powers2 uivizards E {
b j# com.aramco.powers2 xyplot date : uw
v (Best way also on & é
3 sa orgjunitrunner.JUnitCore samples dure
3 com.aramco.powers2 internal ui ,
= {# com.aramco.powers2 ultest | public static void main(String args(]) {
NoBundieTest java Y JUnitCore.main{"com.aramco.powers2.u.util test NbBundleTest");
b i com.aramco.powers2 xyplot date 3 } N
b g samples ! =
b = JRE System Library [jdk1.5.0_06) 7})
b = Plug-in Dependencies i = =
» maJunita | Eror Log Tasks Problems Console Properties Search gu Junit §3 PR A mE-TEO
b @ doc Finished after 0.129 seconds
b & icons Runs: 272 @ Emors: 0 o Failures: 0 | — |
b & META-INF
law build.properties P g]com.aramco.powers2.uitest NbBundleTest [Runner: JUnit 4] = Failure Trace P
COM.aramco. powers2 ul projectmoc
IPlotDataModel violet
-
plugin_customization.ini v
< <]

e , (=1 NI~ Sl 'enle/nome-l(onquerol [

Can you guess from this view the application domain of the code?

IDEs offer only general-purpose tools for editing and managing
code, and are typically unaware of the application domain.

Software inevitably changes ...

But our programming
languages and
development tools
and methods pretend
the world is frozen!

Few, if any mechanisms enable change

Types, modules, namespaces all assume a frozen, unchanging
snapshot of the world. Mainstream programming languages offer
no specific mechanisms to enable software evolution.

(Deprecation limits the effects of change, but does not especially
enable 1t.)

Outlook: Programming
is Modeling

Instead of having disconnected models and code, or even
transformations between models and code, we should consider
code as being the models of concern.

Bring Models
Closer to Code

Link code to the
ecosystem

Exploit domain
models in the IDE

— — — B
- - - - - — .
. it oo eeee —_—
oy - -— —
ooy sum @ ¢Sopmam, PUSS v —_—
0y i e - — pr——
-~y s — S
—y ot — e - S —
i gy - A———— i niih.
o jene sy — —e —_—
- vt p——— v s - i
S e E—
—. -— —
—a - S—
— -
~— - -
s —— =
t—— - ——————-
—

Bring Models
Closer to Code

v ‘~
i

The OO Paradigm 1s commonly (mis-)represented as:
programs = objects + messages

Or even:
programs = objects + classes + inheritance

Although technically correct, this misses the point.

OOP was invented (by Nygaard and Dahl) in the early 60s out of
a need to program real-world simulations. The mechanisms of
objects, messages, classes and inheritance realised in the Simula
language (an extension of Algol) enabled them to develop the
simulations they wanted. Only later did programmers realise that
simulation — as a paradigm — was more generally useful in
software engineering.

“Design your own paradigm”

Object-oriented programming 1s really about designing your own
paradigm. You decide what domain abstractions are important for
your application, and you use them to build your system.

Every OO program is a simulation of a virtual world, 1n which

the objects you have imagined interact to realize some specific
goals.

For an OOPL to succeed

as a modelling language,

(code) models should be
queryable and manipulable

What would this
mean in practice?

Developers continuously ask questions about the code they work
with, but don’t have good tools to formulate these questions.

If programming languages are to succeed as modeling languages,
the models they are used to construct must be comprehensible,
analyzable, queryable and manipulable.

Moose is a platform for
software and data analysis

Orion

DSM

BugMap

Roassal

Extensible meta model

Smalltalk

Java —

COBOL —

C++ —

External
Parser

MSE

Model repository

Navigation

Metrics

Querying

www.moosetechnology.org

Grouping

Smalltalk

http://www.moosetechnology.org

Moose 1s a p.
software anal

atform for modeling software artefacts to enable
ysis. Moose offers a number of core features to

navigate models, query them and analyze them. Numerous
analysis and visualization tools have been developed on top of

Moose.

Moose has been developed for well over a decade. It 1s the work
of dozens of researchers, and has been the basis of numerous
academic and industrial projects.

www.moosetechnology.org

P I =

3 - "
o LLLENLE

.oy Lk ieTw T
wldlns - v
Meiny - I
o licegeibinlwdorgyniee
2 soqniped we e e -
oTard oo e
cctodfoiny + | ek LoBe
R R T e
Sy b B
WWelng i+ 8.0 |
o liiaguiiie e
Poraed 0h ceguiy .- -
2Bl ya—- B
o adyel hioVder -
V3 b B v
e e b _periteve "
et o s Wi

i

a Quicihe, »
SEEE NN EEER %
SEEE NN EEER

‘ opn o

The figure shows the following visualisations:

First row: System complexity (class hierarchy decorated with metrics) - Clone
evolution view

Second row: Class blueprint (shows relationships between methods and
attributes within a class) - Topic Correlation Matrix - Distribution Map (for
topics spread over classes 1n packages)

Third row: Hierarchy Evolution view (shows histories of classes) - Ownership
Map (shows ownership of artefacts over time)

Although Moose 1s a powerful and expressive platform, 1t still
requires that models be imported from a code base. The close

integration of the development environment and analysis tools 1s
still missing.

How to make tools
understand DSLs?

006 Debugger

SQLQueries>>findUser:
OBGroupingMorph>>Dolt
BIockClosure>>value

WWWMMMWW@

findUser: aString

<Q>-O

| rows | A
rows := SELECT 1d FROM users
WHERE username = @(aString ~= B
* rows first
v

(thisContext) 'renggli’ (self) a SQLQueries
astring
rows

@\LL H\ i v

Helvetia

e

Tl T ane 4 &5

Renggli et al., Embedding Languages without Breaking Tools. ECOOP 2010

Domain-specific languages help to maintain the link between
models and code.

Unfortunately such language extensions typically do not play
well with the IDE.

Here we see SQL and regexes as extensions to Smalltalk, with
syntax highlighting integrated into the development tools.

Renggli et al., Embedding [Languages without Breaking Tools. ECOOP 2010

Outlook: models = code

Rather than modeling code, we need the code to be the model.
(This Lego town 1s both a model of a town, and 1t is a toy town at
the same time.)

Bertrand Meyer says he was long puzzled by the fascination with
modeling notations and CASE tools, until he realized one day
their attraction: “Bubbles and arrows don 't crash.”

x - 0O
a PGConnection (a PGConnection)

State SQL Meta

select

city.countrycode,
city.name as cityname,
city.population,
country.lifeexpectancy as life,
country.continent

from city

left join country

on city.countrycode=country.code

Inspector on a PGConnection (a PGConnection)

a PGResultSet (a PGResultSet)

State Result

countrycode
AFG
AFG
AFG
AFG
NLD
NLD
NLD
NLD
NLD
NLD
NLD
NLD
NLD
NLD
NLD

Meta

cityname
Kabul
Qandahar
Herat
Mazar-e-Sharif
Amsterdam
Rotterdam
Haag
Utrecht
Eindhoven
Tilburg
Groningen
Breda
Apeldoorn
Nijmegen
Enschede

population

1780000
237500
186800
127800
731200
593321
440900
234323
201843
193238
172701
160398
153491
152463
149544

life
45.9
459
45.9
459
78.3
78.3
78.3
78.3
78.3
78.3
78.3
78.3
78.3
78.3
78.3

Exploit domain
models in the IDE

continent

Asia

Asia

Asia

Asia

Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe

O
a GET2DiagramBuilder (a GET2DiagramBuilder)
View State Meta ® @

Mumbai (B

Ciudad de MADxic«

x - 0O Halt

Stack P I« . » ». ¥ Source v x Q

RubScrolledTextMorph>>whenTextAcceptRequest: “ whenTextAcceptRequest: anAnnouncement

self halt.

self announcer announce: anAnnouncement.
self acceptContents

MessageSend>>value:

MessageSend>>cull:

MessageSend>>cull:cull:
AnnouncementSubscription>>deliver: in Block: [acti
BlockClosure>>on:do:

BlockClosure>>on:fork: CO n Ve n t i O n a I d e b u g g e rS

AnnouncementSubscription>>deliver:

SubscriptionRegistry>>deliver:to:startingAt: in Block - t ff . t f t
BlockClosure>>ifCurtailed: J u S O er an I n er ace O
SubscriptionRegistry>>deliver:to:startingAt:

the run-time stack.

SubscriptionRegistry>>deliver: v
N P
50/59
Type Variable Value -
_self a RubScrolledTextMorph(369885184)
_stack top a RubTextAcceptRequest
_thisContext RubScrolledTextMorph>>whenTextAcceptRequest:
EOENS alwaysAccept nil
I?I anAnnouncement a RubTextAcceptRequest
B8 autoAccept false
i

[-—=1 | i P L W N, 1, W) N — o 2 W W Wi S AN

The debugger 1s just one example of a classical IDE tool that
knows nothing about your specific application domain. It just
offers generic functionality that often does not fit well the needs
of a particular domain.

Moldable Tools

Specific Models

¢§ A

Mind the abstraction gap

* W

The Moldable e
Debugger e

Generic Debugger

Domain-specific Debuggers

Activaton | T i T————————

Predicate 2 R et

Debugging |, *[Debugging P ad =
Widget Action

Andrei Chis et al. The Moldable Debugger: A Framework
for Developing Domain-Specific Debuggers. SLE 2014.

Classical development tools like browsers, debuggers and
inspectors are generic and do not address the needs of specific
domains.

The Moldable debugger can be easily adapted to different
domains, such as event-driven computation, GUI construction
and parser generation.

Andrei1 Chis et al. The Moldable Debugger: A Framework for Developing
Domain-Specific Debuggers. SLE 2014.

PetitParser

L.
/N

{lf:ter if

/ i“\
Qf‘tter {c.li‘git

identifier
letter , (letter / digit) *

PetitParser 1s a PEG-based framework for developing parsers
composed of objects.

x - O Default Debugger

Stack P 1« . » »* v Source

PPStream(ReadStream)>>next - parseOn: aPPContext

PPContext>>next A parser parseOn: aPPContext
PPPredicateObjectParser>>parseOn:
PPDelegateParser>>parseOn:
PPChoiceParser>>parseOn:
PPPossessiveRepeatingParser>>parseOn:
PPSequenceParser>>parseOn:
PPDelegateParser>>parseOn:
PPEndOfinputParser>>parseOn:
PPldentifierParser(PPDelegateParser)>>parseOn:
PPldentifierParser(PPParser)>>parseWithContext:
PPIdentifierParser(PPParser)>>parse:withContext:

PPIdentifierParser(PPParser)>>parse:

v
4 >
Type Variable Value
_self a PPDelegateParser(identifier)
_stack top a PPContext
_thisContext PPDelegateParser>>parseOn:
aPPContext a PPContext
m parser a PPSequenceParser(273678336)

m properties a Dictionary(#name->#identifier)

v x Q [3

A conventional debugger knows nothing about the parsing
domain. Here we see the Pharo Smalltalk debugger with a view of
the run-time stack at the left, the source code of the selected
method at right, and the currently accessible local variables at the
bottom.

x - O

Stack . U

PPStream(ReadStream)>>next

PPContext>>next

I'I

L

PetitParser Debugger

Source
A

v x Q [5] Stream Q

parseOn: aPPContext
A parser parseOn: aPPContext

PPPredicateObjectParser(129761280, 'digit expected’):

PPDelegateParser(digit)>>parseOn:

PPChoiceParser(1017118720)>>parseOn:
PPPossessiveRepeatingParser(214958080)>:
PPSequenceParser(935854080)>>parseOn:
PPDolegatoPamr(idontiﬁaerarseOn:
PPEndOfinputParser(239861760)>>parseOn:
PPIdentifierParser(PPDelegateParser)(471334912)>>p:

PPldentifierParser(PPParser)(471334912)>

PPldentifierParser(PPParser)(471334912)>

PPldentifierParser(PPParser)(471334912)

| IndafinadNhiart>>Nalt

<4
Type Variable
_self
_stack top
_thisContext

aPPContext
G0 parser
m properties

>parseOn:

a PPDelegateParser(identifier)
a PPContext
PPDelegateParser>>parseOn:

a PPContext
a PPSequenceParser(935854080)

a Dictionary(#name->#identifier)

aLong32Identifier

First Follow

Source Graph Map Example
identifier—| letter [————*| letter
>>parseWith(
>>parse:with —*|digit
>>parse: *
v
>
Value

-

A moldable PetitParser debugger knows which objects are
parsers, knows where we are 1n the input, and can show us which
parser object 1s currently active. Instead of being forced to
laboriously step through methods to find what we are looking for,
we can step directly to the next grammar rule of interest.

Debugging widgets

parseOn : aPPContext Stream .
PPDclegateP arser| lasBody | »parseOn: Q

PPOeagmtel o ves roemall LasiOwilaw alinn > ~parieOn
PO gatel e caisbeclanston > parseln
PPOvlegatel swrver| ClaisOrintertaceDeclar aticn = *parveOe:

PP Oeleg el wver| Lypeleciar stion | » »parseOn

Source Graph Map Example First Follow

RO gl sauarae identifier—"| letter |—— —"| letter }— —=

~[ia—

Type Variable Value
_self a PPDelegateParser(identifier)
_stack top a PPContext
_thisContext PPDelegateParser>>parseOn:
aPPContext a PPContext
parser a PPSequenceParser(935854080)
properties a Dictionary(#name->#identifier)

Debugging actions

oo S Next parser

Next production

Next failure

Production(aproduction)

Stream position(aninteger)

Stream position changed

Activation

. . . Predicate
Domain-specific extensions are bebugging | pebugge | Debugging 1*
Composed from debugging Widget Actlion Predicate
widgets and actions, and l i ,

; Debuggi Debuggi Primiti HighLevel

trigger eq by con.textual “View [T > Cesson” Prodicate Predioate [
debugging predicates.

Moldable debuggers are built up from debugging widgets and
debugging actions. The moldable debugger uses activation
predicates to know which debuggers can currently be activated,

allowing the developer to switch between debuggers without
starting a new session.

Petit Parser

PPDelegateParser(digit)>>parseOn:

PetitParser Debugger

P o= MY Source v x Q
parseOn: aPPContext

A parser parseOn: aPPContext

Source Graph Map Example = First

Type Variable
_self
_stack top
_thisContext
aPPContext
parser
properties

arser)(471334912)>>|
erl />2pi identiﬁer* —|—>

Value

a PPDelegateParser(identifier)
a PPContext
PPDelegateParser>>parseOn:
aPPContext

a PPSequenceParser(935854080)
a Dictionary(#name->#identifier)

SUnit

SUsa Debugper
LI S ——

Ternme RNttt el g

LTl tamga g e AP | et a v -

Stream Q

along32Identifier

Follow

T_*

Fyoe e

Events

Arnouncement Centric Debugper

TR Y " Assa

L L Al

it
b gt— & ——r N - -
O L -t
A e gt Basage tens Pehs e A ARt e b A
e LT T T
» Bd Srngh v - aq-

eeptComtmate .

SWOnCE | (AT ETACCHPTRIGEAT Bo

Glamour

Camour Debugper

oAy e
A ¢ g o s A M el Y 0

e A

Moldable debuggers have been built for several different domains
already. The event-based debugger supports event-driven
programming (which does not map well to a stack).

The SUnit debugger knows about and supports the notion of tests.

The Glamour debugger knows about the domain of flow-based
model browsers.

New debuggers are cheap

Session |Operations|View|Total
Base model 800 700 - | 1500
Detault Debugger| - 100 400 | 500
Announcements 200 50 200 | 450
Petit Parser 100 300 200 | 600
Glamour 150 100 50 | 300
SUnit 100 - 50 | 150

Although some expertise 1s required to build a new debugger, the
development effort for a new debugger is tiny.

Outlook: domain-aware IDEs

We have been exploring how to apply the 1deas behind the
moldable debugger to other domains, such as object inspection
(the moldable inspector) and querying (the “moldable spotter™).

In the long run, we 1magine a complete development environment
that 1s easy to adapt (mold) to various technical and application
domains with low effort.

Link code to the
ecosystem

The architecture

I

... IS hot in the code

Although the architecture 1s one of the most important artifacts of
a system to understand, it 1s not easily recoverable from code.
This 1s because: (1) a system may have many architectures (eg
layered and thin client), (2) there are many kinds of architecture
static, run-time, build etc), (3) PLs do not offer any support to

encode architectural constraints aside from coarse structuring and
interfaces.

“What will my code
change impact?”

Large software systems are so complex that one can never be sure

until integration whether certain changes can have catastrophic
effects at a distance.

We somehow need to establish the link between the code and the
(hidden) architecture.

What is SA in the Wild?

e0o0

' Architecture Constraints

c ﬂ 1] Kg.unibc.chv",un’cy/sur‘.'cyphp - » n

Andrea Caracciolo, et al. How Do Software Architects Specify
and Validate Quality Requirements? Software Architecture 2014.

i

Survey on Architectural Constraints

In the following survey you will be asked to estimate the relevance of several architectural constraints.
At each step you will be presented with:

« an architectural concem: an interest which pertains to the system's development, its operation or any
other aspects that are critical or otherwise important to one or more stakeholders.

¢ some constraint examples related to the specified architectural concern.

« questions related to constraints associated to the specified architectural concern.

The evaluation is subjective and should be based on your personal professional experience.
Before expressing your evaluation, please make sure you carefully read and understand the examples given for
each constraint. All information obtained from this study will be kept anonymous.

Motivation
The architecture of a software system consists of design constraints that guarantee non-functional

properties, such as ease of evolution, good run-time performance, and rapid build times.

Architecture is rarely explicit in code and alignment between intended and actual architecture is often very
difficult to validate and requires consistent human effort.

There have been several attempts to address this problem (e.g. component dependencies: JDepend,
Sotograph, Structure 101; performance: JMeter) but there are stil many aspects that remain ignored.

Our goal is to develop new ways for expressing and verifying architectural constraints.

We envision a set of tools that help identifying implementation solutions that break specified architectural
requirements. This questionnaire will help us to identify the most relevant and commonly specified aspects of an
architecture. This will provide a solid starting point for our research project

Thanks for your collaboration. Q&'Egﬁ {:?.Z,'ﬁ,umbm

The theory seems to

suggest that SA 1s mainly about structure and

dependencies. Our experience with actual projects suggested that

the truth might be di:

ferent.

We carried out a cou

vle of empirical studies, first a qualitative

one to understand what 1s SA in the wild, and then a second,
quantitative one to see to what extent various kinds of constraints

appear 1n practice.

Andrea Caracciolo, et al. “How Do Software Architects Specify and Validate

Quality Requirements?’

> Software Architecture 2014.

constraint Impact (1-5) |

availability 4.2

I m pact Of SA response-time 4.0
authorization 3.9

- authentication 3.6
Co n St ra I n ts communication 3.4
throughput 3.4

signature 3.4

software infrastructure 3.3

data integrity 3.3

overaitity 3.1

3.1

3.0

3.0

hardware infrastructure 2.9

system behavior 2.9

data structure 2.9

event handling 2.9

code metrics 2.7

meta-annotation 2.6

naming conventions 2.6

file location 2.5

accessibility 2.5

software update 2.2

In the quantitative study we asked developers how important
different kinds of architectural constraints were for their projects.

Interestingly, 1n the top ten, there were signis

1cantly more user

constraints, like availability (1in green) than developer constraints
(in blue). Dependencies were only halfway down the list.

Automated Validation is not Prevalent

authorization

throughput -

response-time

data retention policy - .

authentication

data integrity -

visual design

code quality -

meta-annotation

accessibility -
communication
availability -
event handling - [

data structure

software infrastructure
signature
dependencies
recoverability _

software update
hardware infrastructure
file location

naming conventions

| | | | |
0% 25% 50% 75% 100%

Quality requirements are only checked 40% of the time.

Formalization is not Prevalent

dependencies -
signature -

data structure -
meta-annotation -
naming conventions -

event handling 1
authorization 1
data integrity -

communication 1
visual design -
code metrics1

file location 10 e
availability -
response-time1
throughput 0
data retention policy 10
authentication 1000
software infrastructure 100
recoverability 10
accessibility -
hardware infrastructure -
software update -

I I
0% 25%

ER UML + proflle
. Regex, BNF
annotations

On average QRs are formally specified only 20 % of the time.
Practitioners use different formalisms: from UML+profile to

regex.

One of the key problems 1s usability. Where tools exist,
functionality 1s limited and usability 1s poor. A host of different
notations are needed to use these tools.

Dicto — a unified ADSL

DSL

only Controllers can catch InputExceptions
Tests must have method Setup, Teardown
XMLWeb must have child "serviet-mapping”

Andrea Caracciolo, et al. Dicto: A Unified DSL
for Testing Architectural Rules. ECSAW '14.

Evaluator

Analyzers

Dicto offers a unified specification language as a front end to
various tools. A generic DSL captures the basic structure of most
architectural constraints. The language 1s adapted to different
needs, and 1s used to generate the actual specification needed as
input to a given tool.

The tool has been applied to a variety of domains and has been
validated 1n a number of industrial case studies.

Andrea Caracciolo, et al. “Dicto: A Unified DSL for Testing Architectural
Rules.” ECSAW '14.

Outlook: link the code to
Its environment

Linking code to architecture 1s just one example.

Conclusion

Outlook: Programming
is Modeling Outlook: link the code to

its environment

Outlook: domain-aware IDEs

