
Making Systems Explainable*

1st Oscar Nierstrasz
feenk GmbH, Wabern, Switzerland

ORCID: 0000-0002-9975-9791

2nd Tudor Gı̂rba
feenk GmbH, Wabern, Switzerland

ORCID: 0000-0002-2987-9624

Abstract—What makes software systems explainable?
As we develop and maintain software, we have questions to ask

about the code, but piecing together the answers remains hard.
The main interface the classical IDE offers is a text editor for
the source code. Code, documentation, and the running system
are disconnected.

In this keynote presentation, we will show how software
systems can be made explainable with the help of three inter-
acting technologies: (i) live notebooks that can be used to create
narratives that link documentation, source code, and running
applications, (ii) example methods that not only perform tests,
but produce live examples that can be used within narratives,
to explain use cases, scenarios and features, and (iii) a moldable
inspector that can be easily extended with live custom views to
answer domain-specific questions about software systems.

With the help of running examples we will show in the keynotes
presentation how these technologies work together to provide a
radically different kind of development experience.

Index Terms—Smalltalk; program comprehension; notebooks;
testing; debugging

WHAT DOES IT MEAN FOR A SYSTEM TO BE EXPLAINABLE?

For a software system to be explainable, it should empower
developers to answer questions about it. Questions like:
– How does this work?
– Where is this feature implemented?
– Where is this event handled?
– What does this code do?
– How do I use this API?
– Where should I hook in this new feature?

Questions like these are not just about the code, but also
about the running system, and narratives about how it works.
Furthermore, the answers often entail multiple levels of ab-
straction to be addressed simultaneously. As a consequence,
an explainable system must not only be queryable and ex-
plorable, but it must be able to offer narratives that link stories
with source code and live objects. These narratives serve to
explain the system not only to developers, but also to other
stakeholders.

WHAT PREVENTS CURRENT SYSTEMS FROM BEING
EXPLAINABLE?

Current IDEs are mostly focused on editing of source code.
Sure, there are debuggers, and plugins for analysis, but the
main paradigm is: stare at your code, edit it, compile, run
your tests, run the code, fix bugs, repeat.

* Invited keynote presentation at VISSOFT 2022.

Documentation is largely static, and at most provides links
to other documentation, or to source code. Tests provide a path
to live objects only if they fail, and if one is brave enough to
use a debugger to explore the live program state. Debuggers
offer only low-level inspector views of the state of objects.
Various plugins may exist but such specialized tools tend not
to offer ways to tailor their views to the specific questions
raised within the domain of a particular application.

HOW DO WE MAKE SYSTEMS EXPLAINABLE?
We claim that we can make systems explainable by shifting

the focus in the IDE from editing source code to exploring
live objects, source code, and narratives that link them. Such
an IDE would allow us to seamlessly navigate between these
three aspects.

Glamorous Toolkit,1 or GT, is a moldable development
environment which is designed so that its tools can be easily
“molded” to the needs of a particular domain or application.
Although there are many parts to GT, the key components for
making systems explainable are (i) a live notebook (Lepiter)
that allows developers to construct interactive narratives about
code and live objects, (ii) a coding environment (aka “Coder”)
that links source code to live examples, and (iii) a moldable
object inspector (Inspector) that allows developers to cheaply
add custom views for exploring and navigating the web of
objects of a domain.

These components make systems explainable by enabling
querying, navigation and story-telling for developers, and also
for other stakeholders.

REALLY? EXPLAIN THE PIECES TO ME

A. Lepiter

Lepiter [1] is a live notebook, connecting documentation of
models and source code with live, running examples.

Pages in a notebook consist of linked text interspersed
with various kinds of snippets, such as embedded code, live
visualizations, and code snippets that can be evaluated. As in
the Coder and the Inspector, one navigates from view to view
with the help of Miller Columns,2 so from a given page, one
can navigate to another Lepiter page, a Coder view of a class
or method, or an Inspector view of a live object (Figure 1).

One can therefore create narratives either by (i) telling
stories in Lepiter pages, or (ii) following a trail of cascading
views.

1https://gtoolkit.com
2https://en.wikipedia.org/wiki/Miller columns

https://orcid.org/0000-0002-9975-9791
https://orcid.org/0000-0002-2987-9624
https://gtoolkit.com
https://en.wikipedia.org/wiki/Miller_columns


Fig. 1. Navigating from a Lepiter note to a custom view of live instance, and
from there to the source code.

B. Examples

Examples are live objects produced by executing example
methods [2], [3], [9].

Example methods are just like unit tests, except that they
return an object instead of simply passing or failing. This
means that the result of a test is not just a status report, but a
live object that can be explored.

An example can be used as input to another example
method, thus allowing tests to be chained. (So when a test
fails, its dependent tests don’t fail, as they are not run [4].)

Examples can be used to create narratives, to explain use
cases, scenarios and features. Since examples can be chained,
it is possible to create a chained sequence of examples that
illustrate a particular scenario. Such examples can also be
embedded into a notebook page that documents and explains
the steps of the scenario, while linking to the live, explorable
instances (Figure 2).

Fig. 2. Explaining a scenario by composing examples that illustrate steps in
a computation

C. The Moldable Inspector

The Inspector [5] extends the usual debugging object inspec-
tor with interactive playgrounds, Miller columns and custom
views. Rather than being an incidental tool that is only used in
a debugging context, the Inspector serves as the environment
in which the other tools live, as we are always inspecting some
kind of object. The Miller columns are the primary mechanism
for navigating through a chain of connected objects. Each
column provides a view of an object, and a playground that
allows you to send messages to that object. Each playground
is, in turn, a complete Lepiter page that can combine annotated
text, live code snippets, and other entities. As a consequence
the Inspector offers two ways to navigate. You can either click
in the interactive view to open another view in the adjacent
column, or you can evaluate a code snippet (or follow a link)
to inspect the result in new column.

The Inspector is moldable in the sense that it can be cheaply
extended with custom views that are specific to a given context
(be it a domain, an application, or even an individual object)
during development. [6], [7]. The key insight is that every
software system raises its own questions and issues, so generic
views are less likely to be helpful in making such systems
explainable. By making it easy and cheap to add custom views,
the Inspector is elevated from being an obscure debugging aid,
to a central tool for exploring and explaining complex software
systems.

Whereas live interactions and playground queries provide a
way to navigate through a web of connected objects, custom
views do the opposite! Each custom view consists of (i) an
encapsulated query, to produce the object(s) of the view, and
(ii) a simple, interactive visualization of the result. Thus, the
point of custom views is to enable developers to quickly find
answers to common questions just by selecting the tab of
interest, without having to navigate or code a query (Figure 3).

Fig. 3. Custom views of a Ludo game object and its moves help to explain
the game logic

WHY IS IT CHEAP TO BUILD CUSTOM VIEWS?

Tools are only effectively moldable if it is cheap to adapt
them. In the current release of GT,3 there are 1974 custom GT

3DEV v0.8.1735, 26 July 2022



views, consisting of 22 932 lines of code, or just short of 12
lines per view. Of course there is a lot of heavy lifting being
done somewhere else, but in practice, with a bit of experience,
these views are easy to create (Figure 4).

Fig. 4. Custom views for static analysis of a Python project

The key insight, however, is that GT is built with a graphical
stack that has just one rendering tree [8]. This makes it easy
to create flexible visualizations combining arbitrary elements,
i.e.. text, graphics, and widgets.

HOW DOES ALL THIS IMPACT SOFTWARE DEVELOPMENT?
Just like testing should not be an afterthought, making

systems explainable should be part of the development process.
In short, you should: (i) document narratives about the

software you are building as well the process you are following
itself, (ii) create meaningful examples as you develop, and
(iii) create customs views to expose what’s important.

Lepiter influences development in several ways: Live docu-
mentation is not an add-on, but an integral part of a software
system. Lepiter is the single starting point for most devel-
opment tasks. For example, we used a Lepiter page even to
find out how many custom views there are in GT (Figure 5).
Systems become explainable by linking code and examples
in live documentation. Creating narratives that consist of live
documentation becomes part of the development process. As
you develop software, you document your process by creating
tagged notes that describe features and use cases, while linking
code and examples. Whenever we have a question, we devise
a custom narrative to make the problem explicit. It’s the
narrative that drives the rest. This is the essence of what we
call Moldable Development.4

Examples also form a key component of both the software
and the process: Example-driven development [9] forces you to
develop the system in a way that it can be explored, visualized
and explained, just like TDD encourages you to develop
systems so they become testable! If you need a feature, write
an example (test). If you find a bug, write an example. If you
want to explain something, write an example.

Finally, custom views reach their potential if they are intro-
duced as the need for them arises: If you need to navigate or

4https://moldabledevelopment.com

Fig. 5. Querying Pharo code

write a query, create a view. If you need to explain something
about a domain concept, create a custom view. Apply the
principles of GQM (Goal - Question - Metric) to developing
custom views — don’t introduce a view just because an easy
visualization is available, but because there is a demonstrated
need arising from domain-specific questions. These questions
may come from the developers, but they may also come from
the customer, the user, or other stakeholders. Create the views
as you develop to enhance both debugging and documentation.
Custom views answer questions about domain objects in an
application. These answers become words in narratives in live
notebooks, to make systems explainable.

IS THAT ALL THERE IS?

Well, no. There are many other important components that
help to make systems explainable with GT. For example,
Spotter [10] is context-aware tool that helps you search for
anything in the IDE. GT is also a language workbench
powered by the mature SmaCC compiler-compiler framework
that enables the reverse engineering, parsing and editing of
foreign languages [11]. All these are integrated in a uniform
environment made out of visual and interactive operators that
can be combined to create many unexpected development
experiences.

GT is an enabling technology for Moldable Development.
Once we can explain the inside of systems, we get to unlock
new opportunities at the level of the development process and
even for how we create new business value.

https://moldabledevelopment.com


SO, HOW WOULD YOU SUM THAT UP?

Systems become explainable by making it easy to create
narratives that link documentation, code, and live objects. This
means that domain concepts become explicit, so it is easy to
navigate between concepts and their instances, and it is easy
to have dedicated views that expose the underlying concepts.

Instead of seeing a software system as a static collection
of source code files, it should be responsive and live, inte-
grating narratives about the code and the running application.
Alternatively, if the application is the analysis of a foreign
codebase, the resulting analysis model should be equally live
and responsive.

The result is that an explainable system is one which
supports a dialogue between the developer and the system. The
narratives and the views arise from the questions developers
ask of the system.

Acknowledgments

We thank Pooja Rani for her feedback on a draft of this
paper.

REFERENCES

[1] T. Gı̂rba, “Introducing Lepiter: Knowledge management
+ multi-language notebooks + moldable development,”
2021. [Online]. Available: https://lepiter.io/feenk/
introducing-lepiter--knowledge-management--e2p6apqsz5npq7m4xte0kkywn/

[2] M. Gaelli, “Test composition with example objects and example
methods.” in Proceedings of the ECOOP ’03 Workshop on Object-
oriented Language Engineering for the Post-Java Era, ser. LNCS,
vol. 3013, Jul. 2003, pp. 143–153, abstract only — full version
availabe as technical report IAM-03-009. [Online]. Available: http:
//scg.unibe.ch/archive/papers/Gael03aTestComposition.pdf

[3] M. Gaelli, R. Wampfler, and O. Nierstrasz, “Composing tests from
examples,” in Journal of Object Technology, Special Issue. Proceedings
of TOOLS Europe 2007, vol. 6/9, Oct. 2007, pp. 71–86. [Online].
Available: http://www.jot.fm/issues/issue 2007 10/paper4.pdf

[4] A. Kuhn, B. V. Rompaey, L. Hänsenberger, O. Nierstrasz, S. Demeyer,
M. Gaelli, and K. V. Leemput, “JExample: Exploiting dependencies
between tests to improve defect localization,” in Extreme Programming
and Agile Processes in Software Engineering, 9th International
Conference, XP 2008, ser. Lecture Notes in Computer Science,
P. Abrahamsson, Ed. Springer, 2008, pp. 73–82. [Online]. Available:
http://scg.unibe.ch/archive/papers/Kuhn08aJExample.pdf

[5] A. Chiş, T. Gı̂rba, O. Nierstrasz, and A. Syrel, “The Moldable
Inspector,” in Proceedings of the 2015 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming
and Software, ser. Onward! 2015. New York, NY, USA: ACM,
2015, pp. 44–60. [Online]. Available: http://scg.unibe.ch/archive/papers/
Chis15a-MoldableInspector.pdf

[6] A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart, and
A. Syrel, “Moldable tools for object-oriented development,” in PAUSE:
Present And Ulterior Software Engineering, B. M. Manuel Mazzara,
Ed. Springer, Cham, 2017, pp. 77–101. [Online]. Available:
http://scg.unibe.ch/archive/papers/Chis17a-MoldableToolsPAUSE.pdf

[7] ——, “Exemplifying moldable development,” in Proceedings of the Pro-
gramming Experience 2016 (PX/16) Workshop, ser. PX/16. New York,
NY, USA: ACM, 2016, pp. 33–42. [Online]. Available: http://scg.unibe.
ch/archive/papers/Chis16b-ExemplifyingMoldableDevelopment.pdf

[8] T. Gı̂rba, “One rendering tree,” 2020. [Online]. Available: https:
//medium.com/feenk/one-rendering-tree-918eae49bcff

[9] ——, “An example of example-driven develop-
ment,” 2019. [Online]. Available: https://medium.com/feenk/
an-example-of-example-driven-development-4dea0d995920

[10] A. Chiş, T. Gı̂rba, J. Kubelka, O. Nierstrasz, S. Reichhart,
and A. Syrel, “Moldable, context-aware searching with Spotter,”
in Proceedings of the 2016 ACM International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and
Software, ser. Onward! 2016. New York, NY, USA: ACM, 2016,
pp. 128–144. [Online]. Available: http://scg.unibe.ch/archive/papers/
Chis16a-MoldableContextAwareSearchingWithSpotter.pdf

[11] J. Brant, J. Lecerf, T. Goubier, S. Ducasse, and A. Black,
“Smacc: a compiler-compiler,” 2017. [Online]. Available: https:
//books.pharo.org/booklet-Smacc/html/smacc.html

https://lepiter.io/feenk/introducing-lepiter--knowledge-management--e2p6apqsz5npq7m4xte0kkywn/
https://lepiter.io/feenk/introducing-lepiter--knowledge-management--e2p6apqsz5npq7m4xte0kkywn/
http://scg.unibe.ch/archive/papers/Gael03aTestComposition.pdf
http://scg.unibe.ch/archive/papers/Gael03aTestComposition.pdf
http://www.jot.fm/issues/issue_2007_10/paper4.pdf
http://scg.unibe.ch/archive/papers/Kuhn08aJExample.pdf
http://scg.unibe.ch/archive/papers/Chis15a-MoldableInspector.pdf
http://scg.unibe.ch/archive/papers/Chis15a-MoldableInspector.pdf
http://scg.unibe.ch/archive/papers/Chis17a-MoldableToolsPAUSE.pdf
http://scg.unibe.ch/archive/papers/Chis16b-ExemplifyingMoldableDevelopment.pdf
http://scg.unibe.ch/archive/papers/Chis16b-ExemplifyingMoldableDevelopment.pdf
https://medium.com/feenk/one-rendering-tree-918eae49bcff
https://medium.com/feenk/one-rendering-tree-918eae49bcff
https://medium.com/feenk/an-example-of-example-driven-development-4dea0d995920
https://medium.com/feenk/an-example-of-example-driven-development-4dea0d995920
http://scg.unibe.ch/archive/papers/Chis16a-MoldableContextAwareSearchingWithSpotter.pdf
http://scg.unibe.ch/archive/papers/Chis16a-MoldableContextAwareSearchingWithSpotter.pdf
https://books.pharo.org/booklet-Smacc/html/smacc.html
https://books.pharo.org/booklet-Smacc/html/smacc.html

	Lepiter
	Examples
	The Moldable Inspector
	References

