
Object-Oriented
Reengineering Patterns

Serge Demeyer

Stéphane Ducasse

Oscar Nierstrasz

Version of 2013-11-27

ii

iii

Praise for Object-Oriented Reengineering Patterns

“How” to refactor is already well covered in the literature. However,
“When” and “Why” can only be learned by experience. This book will
give you a head start in learning when to start redesigning a system, when
to stop for now, and what effects you can expect to see from your efforts.

— Kent Beck, Director, Three Rivers Institute

This book is full of practical, hands-on reengineering knowledge and ex-
pertise presented in a form that makes it easy to understand and use. The
patterns in this book thus help everyone who is concerned with using
reengineering to guide their work. I wish I had had this book in my li-
brary earlier.

— Frank Buschmann, Senior Principal Engineer Siemens AG

This book is more than its title advertises. Effective reengineering is really
about purposeful and efficient reading of someone else’s code in order to
produce predictable change. The same processes the authors highlight as
patterns of skillful reengineering behavior can easily be cast as the skills
you need to create readable, maintainable software systems.

— Adele Goldberg, Neometron, Inc.

If a guy named Dave brought a large box to my office that contained a
lot of documentation and two CDs-installation disks for software that my
company wanted to reengineer — I’d be happy to have the authors of this
book by my side. Barring that, having their book is the next best thing. No
silver bullets, no hype, no promises that this will be easy — just a down-to-
earth, easy-to-read, extremely useful book of helpful guidelines to tackle
the project. Buy this book and browse it before Dave arrives in your office!
It just might save you and your company a lot of grief.

— Linda Rising, Independent Consultant

iv

This book is available as a free download from http://scg.unibe.ch/oorp/.

Copyright © 2003 by Elsevier Science (USA).
Copyright © 2008, 2009 by Serge Demeyer, Stéphane Ducasse and Oscar Nierstrasz.

The contents of this book are protected under Creative Commons Attribution-ShareAlike 3.0
Unported license.

You are free:

to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor
(but not in any way that suggests that they endorse you or your use of the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the result-
ing work only under the same, similar or a compatible license.

• For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page: http://creativecommons.
org/licenses/by-sa/3.0/

• Any of the above conditions can be waived if you get permission from the copyright
holder.

• Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This
is a human-readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Published by Square Bracket Associates, Switzerland. SquareBracketAssociates.org
ISBN 978-3-9523341-2-6
First Open-Source Edition, June, 2008. Revised, September, 2009.

http://scg.unibe.ch/oorp/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode
SquareBracketAssociates.org

v

For Ann, Sara and Niels.
For Florence, Quentin, Thibaut and Camille.

For Angela and Frida.

vi

Foreword

Foreword by Martin Fowler

For a long time it’s puzzled me that most books on software development
processes talk about what to do when you are starting from a blank sheet
of editor screen. It’s puzzled me because that’s not the most common sit-
uation that people write code in. Most people have to make changes to an
existing code base, even if it’s their own. In an ideal world this code base
is well designed and well factored, but we all know how often the ideal
world appears in our career.

So this book is important because it’s written from the perspective of
what to do with an imperfect yet valuable code base. I also like the fact that
it’s based on an effective mix of academic and industrial work. I visited
the FAMOOS group in their early days during a chill early winter in Bern.
I liked the way that they cycled between the field and the lab, trying out
ideas on real projects, coming back to the lab to reflect.

This resulting book speaks with that experience. It gives you the build-
ing blocks for a plan to tackle a difficult code base, it gives you context for
techniques like refactoring. It is a sad fact that there are too few of these
kinds of books out there, when reengineering is still a common event. But
I’m at least glad to see that while there aren’t many books in this vein, this
book is an example of how good they are.

Martin Fowler, Thought Works, Inc.

vii

viii FOREWORD

Foreword by Ralph E. Johnson

One of the signs of a good pattern is that experts who read it are likely to
say “of course, everybody knows that” but beginners are likely to say “in-
teresting, but will it work?” Patterns should be easy to follow, but the most
valuable patterns are those that are not obvious. Experts have learned
from experience that the patterns work, but beginners have to take the
patterns on faith until they use them and develop their own experience.

Over the last couple of years, I’ve had the chance to give the patterns
in this book to a wide variety of people and discuss them. My pattern dis-
cussion group has a few members who have decades of consulting expe-
rience, and they could quickly regale the group with stories of using these
patterns. The younger members loved the stories as they were convinced
of the value of the patterns.

I made students in my software engineering class read some of the
patterns as part of a section on reengineering. The section went well even
though none of the students got excited by the patterns. They didn’t have
the experience to evaluate them. However, one of the students came back
to me after his summer job and said that of everything in the course, the
material that was the most useful was the patterns on reverse engineering.
Before that experience, the patterns seemed believable. Afterwards, they
were believed!

If you have a lot of experience with software reengineering then you
probably won’t learn much from this book. You should read it anyway,
because you’ll want to give copies to people you work with, and you will
want to use the vocabulary of the book when you talk with them. If you
are new to reengineering, you should read the book, learn the patterns,
and try them. You will learn a lot that will be valuable. Don’t expect to
understand the patterns completely before you try them, because patterns
are practical, and practical knowledge has to be experienced to be fully un-
derstood. Nevertheless, the book will give you a big advantage. It is much
easier to learn when you have a path to follow, and this book provides a
reliable guide.

Ralph E. Johnson, University of Illinois at Urbana-Champaign

Contents

Foreword vii

Preface xiii

I Introduction 1

1 Reengineering Patterns 3

1.1 Why do we Reengineer? . 3

1.2 The Reengineering Lifecycle 8

1.3 Reengineering Patterns . 12

1.4 The Form of a Reengineering Pattern 14

1.5 A Map of Reengineering Patterns 14

II Reverse Engineering 17

2 Setting Direction 19

2.1 Agree on Maxims . 23

2.2 Appoint a Navigator . 25

2.3 Speak to the Round Table . 27

2.4 Most Valuable First . 29

2.5 Fix Problems, Not Symptoms 33

2.6 If It Ain’t Broke, Don’t Fix It 35

2.7 Keep It Simple . 37

ix

x CONTENTS

3 First Contact 39

3.1 Chat with the Maintainers . 45

3.2 Read all the Code in One Hour 53

3.3 Skim the Documentation . 61

3.4 Interview During Demo . 69

3.5 Do a Mock Installation . 77

4 Initial Understanding 83

4.1 Analyze the Persistent Data 87

4.2 Speculate about Design . 97

4.3 Study the Exceptional Entities 107

5 Detailed Model Capture 117

5.1 Tie Code and Questions . 121

5.2 Refactor to Understand . 127

5.3 Step Through the Execution 133

5.4 Look for the Contracts . 137

5.5 Learn from the Past . 141

III Reengineering 147

6 Tests: Your Life Insurance! 149

6.1 Write Tests to Enable Evolution 153

6.2 Grow Your Test Base Incrementally 159

6.3 Use a Testing Framework . 163

6.4 Test the Interface, Not the Implementation 171

6.5 Record Business Rules as Tests 175

6.6 Write Tests to Understand . 179

7 Migration Strategies 181

7.1 Involve the Users . 185

7.2 Build Confidence . 189

7.3 Migrate Systems Incrementally 191

CONTENTS xi

7.4 Prototype the Target Solution 195

7.5 Always Have a Running Version 199

7.6 Regression Test After Every Change 201

7.7 Make a Bridge to the New Town 203

7.8 Present the Right Interface . 207

7.9 Distinguish Public from Published Interface 211

7.10 Deprecate Obsolete Interfaces 215

7.11 Conserve Familiarity . 219

7.12 Use Profiler Before Optimizing 221

8 Detecting Duplicated Code 223

8.1 Compare Code Mechanically 227

8.2 Visualize Code as Dotplots . 233

9 Redistribute Responsibilities 239

9.1 Move Behavior Close to Data 243

9.2 Eliminate Navigation Code 253

9.3 Split Up God Class . 263

10 Transform Conditionals to Polymorphism 269

10.1 Transform Self Type Checks 273

10.2 Transform Client Type Checks 281

10.3 Factor out State . 291

10.4 Factor out Strategy . 295

10.5 Introduce Null Object . 299

10.6 Transform Conditionals into Registration 303

IV Appendices 313

A Thumbnail patterns 315

A.1 Testing Patterns . 316

A.1.1 Retest Persistent Problems 316

A.1.2 Test Fuzzy Features . 316

xii CONTENTS

A.1.3 Test Old Bugs . 316

A.2 Refactorings . 317

A.2.1 Encapsulate Field . 317

A.2.2 Extract Method . 317

A.2.3 Move Method . 317

A.2.4 Rename Attribute . 318

A.2.5 Rename Method . 318

A.2.6 Replace Conditional with Polymorphism 318

A.3 Design Patterns . 319

A.3.1 Abstract Factory . 319

A.3.2 Adapter . 319

A.3.3 Facade . 319

A.3.4 Factory Method . 319

A.3.5 Flyweight . 320

A.3.6 Null Object . 320

A.3.7 Quantity . 320

A.3.8 Singleton . 321

A.3.9 State . 321

A.3.10 State Patterns . 321

A.3.11 Strategy . 321

A.3.12 Template Method . 322

A.3.13 Visitor . 322

Preface

A Fairy Tale

Once upon a time there was a Good Software
Engineer whose Customers knew exactly what

they wanted. The Good Software Engineer worked
very hard to design the Perfect System that would

solve all the Customers’ problems now and for
decades. When the Perfect System was designed,

implemented and finally deployed, the Customers
were very happy indeed. The Maintainer of the
System had very little to do to keep the Perfect

System up and running, and the Customers and
the Maintainer lived happily every after.

Why isn’t real life more like this fairy tale?

Could it be because there are no Good Software Engineers? Could it be
because the Users don’t really know what they want? Or is it because the
Perfect System doesn’t exist?

Maybe there is a bit of truth in all of these observations, but the real
reasons probably have more to do with certain fundamental laws of soft-
ware evolution identified several years ago by Manny Lehman and Les
Belady. The two most striking of these laws are [LB85]:

• The Law of Continuing Change — A program that is used in a real-
world environment must change, or become progressively less use-
ful in that environment.

• The Law of Increasing Complexity — As a program evolves, it becomes

xiii

xiv PREFACE

more complex, and extra resources are needed to preserve and sim-
plify its structure.

In other words, we are kidding ourselves if we think that we can know
all the requirements and build the perfect system. The best we can hope
for is to build a useful system that will survive long enough for it to be
asked to do something new.

What is this book?

This book came into being as a consequence of the realization that the
most interesting and challenging side of software engineering may not be
building brand new software systems, but rejuvenating existing ones.

From November 1996 to December 1999, we participated in a Euro-
pean industrial research project called FAMOOS (ESPRIT Project 21975 —
Framework-based Approach for Mastering Object-Oriented Software Evolu-
tion). The partners were Nokia (Finland), Daimler-Benz (Germany), Sema
Group (Spain), Forschungszentrum Informatik Karlsruhe (FZI, Germany),
and the University of Bern (Switzerland). Nokia and Daimler-Benz were
both early adopters of object-oriented technology, and had expected to
reap significant benefits from this tactic. Now, however, they were ex-
periencing many of the typical problems of legacy systems: they had very
large, very valuable, object-oriented software systems that were very dif-
ficult to adapt to changing requirements. The goal of the FAMOOS project
was to develop tools and techniques to rejuvenate these object-oriented
legacy systems so they would continue to be useful and would be more
amenable to future changes in requirements.

Our idea at the start of the project was to convert these big, object-
oriented applications into frameworks — generic applications that can be
easily reconfigured using a variety of different programming techniques.
We quickly discovered, however, that this was easier said than done. Al-
though the basic idea was sound, it is not so easy to determine which
parts of the legacy system should be converted, and exactly how to con-
vert them. In fact, it is a non-trivial problem just to understand the legacy
system in the first place, let alone figuring out what (if anything) is wrong
with it.

We learned many things from this project. We learned that, for the most
part, the legacy code was not bad at all. The only reason that there were
problems with the legacy code was that the requirements had changed
since the original system was designed and deployed. Systems that had
been adapted many times to changing requirements suffered from design

xv

drift — the original architecture and design was almost impossible to rec-
ognize — and that made it almost impossible to make further adaptations,
exactly as predicted by Lehman and Belady’s laws of software evolution.

Most surprising to us, however, was the fact that, although each of
the case studies we looked at needed to be reengineered for very different
reasons — such as unbundling, scaling up requirements, porting to new
environments, and so on — the actual technical problems with these sys-
tems were oddly similar. This suggested to us that perhaps a few simple
techniques could go a long way to fixing some of the more common prob-
lems.

We discovered that pretty well all reengineering activity must start
with some reverse engineering, since you will not be able to trust the doc-
umentation (if you are lucky enough to have some). Basically you can an-
alyze the source code, run the system, and interview users and developers
to build a model of the legacy system. Then you must determine what
are the obstacles to further progress, and fix them. This is the essence of
reengineering, which seeks to transform a legacy system into the system
you would have built if you had the luxury of hindsight and could have
known all the new requirements that you know today. But since you can’t
afford to rebuild everything, you must cut corners and just reengineer the
most critical parts.

Since FAMOOS, we have been involved in many other reengineering
projects, and have been able to further validate and refine the results of
FAMOOS.

In this book we summarize what we learned in the hope that it will
help others who need to reengineer object-oriented systems. We do not
pretend to have all the answers, but we have identified a series of simple
techniques that will take you a long way.

Why patterns?

A pattern is a recurring motif, an event or structure that occurs over and
over again. Design patterns are generic solutions to recurring design prob-
lems [GHJV95]. It is because these design problems are never exactly alike,
but only very similar, that the solutions are not pieces of software, but doc-
uments that communicate best practice.

Patterns have emerged in recent years as a literary form that can be
used to document best practice in solving many different kinds of prob-
lems. Although many kinds of problems and solutions can be cast as pat-
terns, they can be overkill when applied to the simplest kinds of problems.

xvi PREFACE

Patterns as a form of documentation are most useful and interesting when
the problem being considered entails a number of conflicting forces, and
the solution described entails a number of tradeoffs. Many well-known
design patterns, for example, introduce run-time flexibility at the cost of
increased design complexity.

This book documents a catalogue of patterns for reverse engineering
and reengineering legacy systems. None of these patterns should be ap-
plied blindly. Each patterns resolves some forces and involves some trade-
offs. Understanding these tradeoffs is essential to successfully applying
the patterns. As a consequence the pattern form seems to be the most nat-
ural way to document the best practices we identified in the course of our
reengineering projects.

A pattern language is a set of related patterns that can be used in com-
bination to solve a set of complex problems. We found that clusters of
patterns seemed to function well in combination with each other, so we
have organized this book into chapters that each presents such a cluster as
a small pattern language.

We do not pretend that these clusters are “complete” in any sense, and
we do not even pretend to have patterns that cover all aspects of reengi-
neering. We certainly do not pretend that this book represents a systematic
method for object-oriented reengineering. What we do claim is simply to
have encountered and identified a number of best practices that exhibit
interesting synergies. Not only is there strong synergy within a cluster
of patterns, but the clusters are also interrelated in important ways. Each
chapter therefore contains not only a pattern map that suggests how the
patterns may function as a “language”, but each pattern also lists and ex-
plains how it may be combined or composed with other patterns, whether
in the same cluster or a different one.

Who should read this book?

This book is addressed mainly to practitioners who need to reengineer
object-oriented systems. If you take an extreme viewpoint, you could say
that every software project is a reengineering project, so the scope of this
book is quite broad.

We believe that most of the patterns in this book will be familiar to
anyone with a bit of experience in object-oriented software development.
The purpose of the book is to document the details.

xvii

Acknowledgments

We would like to thank first and foremost our FAMOOS partners at Nokia,
Daimler-Benz, FZI and Sema who provided the context for discovering
these patterns. Persons like Juha (Julho) Tuominen, Roland Trauter, Ed-
uardo Casais and Theo Dirk Meijler played a crucial role while starting the
project. We would especially like to thank our co-authors of the prototype
for this book, The FAMOOS Object-Oriented Reengineering Handbook: Hol-
ger Bär, Markus Bauer, Oliver Ciupke, Michele Lanza, Radu Marinescu,
Robb Nebbe, Michael Przybilski, Tamar Richner, Matthias Rieger, Clau-
dio Riva, Anne-Marie Sassen, Benedikt Schulz, Patrick Steyaert, Sander
Tichelaar and Joachim Weisbrod.

We gratefully acknowledge the financial support of the European
Union towards ESPRIT project 21975 (FAMOOS) as well as that of the
Swiss Government towards projects NFS-2000-46947.96 and BBW-96.0015.
The University of Antwerp provided financial support in terms of a grant
entitled “Object Oriented Reengineering” while the Fund for Scientific
Research in Flanders sponsored by means of a research network named
“Foundations of Software Evolution”.

Some of the material in this book was presented in the graduate course
“Object-Oriented software Reengineering” held at the University of Bern
in the winter semesters of 1998 and 1999, and at several tutorials at OOP-
SLA. We would like to thank the participants of the courses and tutorials
for their feedback and input. We also would like to thank members of the
Software Composition Group at the University of Bern for participating
in several pattern workshops and giving valuable feedback on many of
the patterns in this book: Michele Lanza, Pietro Malorgio, Robbe Nebbe,
Tamar Richner, Matthias Rieger and Sander Tichelaar.

Several of the patterns in this book have been presented elsewhere.
We would like to thank our EuroPLoP shepherds Kent Beck (1998), Kyle
Brown (1999), Neil Harrison (2000), Mary Lynn Manns (2000), Don Roberts
(1998) and Charles Weir (1998) and all participants of the writers’ work-
shops where these patterns have been discussed. Special thanks go to Jens
Coldewey for helping us out with pattern forms and forces.

We would like to thank the members and friends of Ralph Johnson’s
Software Architecture Group who workshopped several chapters of this
book: John Brant, Brian Foote, Alejandra Garrido, Peter Hatch, Ralph
Johnson, Brian Marick, Andrew Rosenfeld, Weerasak Witthawaskul and
Joe Yoder. Downloading and playing voluminous megabytes of work-
shop recordings in mp3 format truly made each of us feel like a “fly on
the wall”!

xviii PREFACE

We would like to thank Tim Cox, our editor, and Stacie Pierce, his as-
sistant, both at Morgan Kaufmann, for following our project with such
dedication. Also, thanks to Christa Preisendanz at DPunkt Verlag for
putting us in touch with Tim in the first place! We especially appreciated
the two very thorough rounds of reviews that this book underwent, and
we only regret that the final draft of this book is nothing like the defini-
tive work some of reviewers clearly hoped it would be! We thank our
reviewers for reading between the lines and helping to explain many of
these patterns to us: Kyle Brown, Thierry Cattel, Oliver Ciupke, Koen De
Hondt, Jim Coplien, Gert Florijn, Neil Harrison, Mary Lynn Manns, Alan
O’Callaghan, Don Roberts and Benedikt Schulz.

Part I

Introduction

1

Chapter 1

Reengineering Patterns

1.1 Why do we Reengineer?

A legacy is something valuable that you have inherited. Similarly, legacy
software is valuable software that you have inherited. The fact you have
inherited it may mean that it is somewhat old-fashioned. It may have
been developed using an outdated programming language, or an obsolete
development method. Most likely it has changed hands several times, and
shows signs of many modifications and adaptations.

Perhaps your legacy software is not even that old. With rapid develop-
ment tools and rapid turnover in personnel, software systems can turn into
legacies more quickly than you might imagine. The fact that the software
is valuable, however, means that you do not just want to throw it away.

A piece of legacy software is critical to your business, and that is pre-
cisely the source of all the problems: in order for you to be successful at
your business, you must constantly be prepared to adapt to a changing
business environment. The software that you use to keep your business
running must therefore also be adaptable. Fortunately a lot of software
can be upgraded, or simply thrown away and replaced when it no longer
serves its purpose. But a legacy system can neither be replaced nor up-
graded except at a high cost. The goal of reengineering is to reduce the
complexity of a legacy system sufficiently that it can continue to be used
and adapted at an acceptable cost.

The specific reasons that you might want to reengineer a software sys-
tem can vary significantly. For example:

• You might want to unbundle a monolithic system so that the indi-

3

4 CHAPTER 1. REENGINEERING PATTERNS

vidual parts can be more easily marketed separately or combined in
different ways.

• You might want to improve performance. (Experience shows that the
right sequence is “first do it, then do it right, then do it fast”, so you
might want to reengineer to clean up the code before thinking about
performance.)

• You might want to port the system to a new platform. Before you do
that, you may need to rework the architecture to clearly separate the
platform-dependent code.

• You might want to extract the design as a first step to a new imple-
mentation.

• You might want to exploit new technology, such as emerging standards
or libraries, as a step towards cutting maintenance costs.

• You might want to reduce human dependencies by documenting
knowledge about the system and making it easier to maintain.

Though there may be many different reasons for reengineering a sys-
tem, as we shall see, however, the actual technical problems with legacy
software are often very similar. It is this fact that allows us to use some
very general techniques to do at least part of the job of reengineering.

Recognizing the need to reengineer

How do you know when you have a legacy problem?

Common wisdom says, “If it ain’t broke, don’t fix it.” This attitude is
often taken as an excuse not to touch any piece of software that is perform-
ing an important function and seems to be doing it well. The problem with
this approach is that it fails to recognize that there are many ways in which
something may be “broken”. From a functional point of view, something
is broken only if it no longer delivers the function it is designed to per-
form. From a maintenance point of view, however, a piece of software is
broken if it can no longer be maintained.

So how can you tell that your software is going to break very soon? For-
tunately there are many warning signs that tell you that you are headed
towards trouble. The symptoms listed below usually do not occur in iso-
lation but several at a time.

Obsolete or no documentation. Obsolete documentation is a clear sign of
a legacy system that has undergone many changes. Absence of doc-
umentation is a warning sign that problems are on the horizon, as
soon as the original developers leave the project.

1.1. WHY DO WE REENGINEER? 5

Missing tests. Even more important than up-to-date documentation is
the presence of thorough unit tests for all system components, and
system tests that cover all significant use cases and scenarios. The
absence of such tests is a sign that the system will not be able to
evolve without high risk or cost.

Original developers or users have left. Unless you have a clean, well-
documented system with good test coverage, it will rapidly dete-
riorate into an even less clean, more poorly documented system.

Inside knowledge about system has disappeared. This is a bad sign.
The documentation is out of sync with the existing code base. No-
body really knows how it works.

Limited understanding of the entire system. Not only does nobody un-
derstand the fine print, but hardly anyone has a good overview of
the whole system.

Too long to turn things over to production. Somewhere along the line
the process is not working. Perhaps it takes too long to approve
changes. Perhaps automatic regression tests are missing. Or per-
haps it is difficult to deploy changes. Unless you understand and
deal with the difficulties it will only get worse.

Too much time to make simple changes. This is a clear sign that Lehman
and Belady’s Law of Increasing Complexity has kicked in: the sys-
tem is now so complex that even simple changes are hard to imple-
ment. If it takes too long to make simple changes to your system,
it will certainly be out of the question to make complex changes. If
there is a backlog of simple changes waiting to get done, then you
will never get to the difficult problems.

Need for constant bug fixes. Bugs never seem to go away. Every time
you fix a bug, a new one pops up next to it. This tells you that parts
of your application have become so complex, that you can no longer
accurately assess the impact of small changes. Furthermore, the ar-
chitecture of the application no longer matches the needs, so even
small changes will have unexpected consequences.

Maintenance Dependencies. When you fix a bug in one place, another
bug pops up somewhere else. This is often a sign that the architecture
has deteriorated to the point where logically separate components of
the system are no longer independent.

Big build times. Long recompilation times slow down your ability to
make changes. Long build times may also be telling you that the

6 CHAPTER 1. REENGINEERING PATTERNS

organization of your system is too complex for your compiler tools
to do their job efficiently.

Difficulties separating products. If there are many clients for your prod-
uct, and you have difficulty tailoring releases for each customer, then
your architecture is no longer right for the job.

Duplicated code. Duplicated code arises naturally as a system evolves, as
shortcut to implementing nearly identical code, or merging different
versions of a software systems. If the duplicated code is not elim-
inated by refactoring the common parts into suitable abstractions,
maintenance quickly becomes a nightmare as the same code has to
be fixed in many places.

Code Smells. code smells Duplicated code is an example of code that
“smells bad” and should be changed. Long methods, big classes,
long parameter lists, switch statements and data classes are few
more examples that have been documented by Kent Beck and others
[FBB+99]. Code smells are often a sign that a system has been re-
peatedly expanded and adapted without having been reengineered.

What’s special about Objects?

Although many of the techniques discussed in this book will apply to any
software system, we have chosen to focus on object-oriented legacy systems.
There are many reasons for this choice, but mainly we feel that this is a crit-
ical point in time at which many early adopters of object-oriented technol-
ogy are discovering that the benefits they expected to achieve by switching
to objects have been very difficult to realize.

There are now significant legacy systems even in Java. It is not age that
turns a piece of software into a legacy system, but the rate at which it have
been developed and adapted without having been reengineered.

The wrong conclusion to draw from these experiences is that “objects
are bad, and we need something else”. Already we are seeing a rush to-
wards many new trends that are expected to save the day: patterns, com-
ponents, UML, XMI, and so on. Any one of these developments may be a
Good Thing, but in a sense they are all missing the point.

One of the conclusions you should draw from this book is that, well,
objects are pretty good, but you must take good care of them. To understand
this point, consider why legacy problems arise at all with object-oriented
systems, if they are supposed to be so good for flexibility, maintainability
and reuse.

1.1. WHY DO WE REENGINEER? 7

First of all, anyone who has had to work with a non-trivial, existing
object-oriented code base will have noticed: it is hard to find the objects.
In a very real sense, the architecture of an object-oriented application is
usually hidden. What you see is a bunch of classes and an inheritance
hierarchy. But that doesn’t tell you which objects exist at run-time and
how they collaborate to provide the desired behavior. Understanding an
object-oriented system is a process of reverse engineering, and the tech-
niques described in this book help to tackle this problem. Furthermore, by
reengineering the code, you can arrive at a system whose architecture is
more transparent, and easier to understand.

Second, anyone who has tried to extend an existing object-oriented ap-
plication will have realized: reuse does not come for free. It is actually very
hard to reuse any piece of code unless a fair bit of effort was put into de-
signing it so that it could be reused. Furthermore, it is essential that in-
vestment in reuse requires management commitment to put the right organi-
zational infrastructure in place, and should only be undertaken with clear,
measurable goals in mind [GR95].

We are still not very good at managing object-oriented software
projects in such a way that reuse is properly taken into account. Typi-
cally reuse comes too late. We use object-oriented modelling techniques to
develop very rich and complex object models, and hope that when we im-
plement the software we will be able to reuse something. But by then there
is little chance that these rich models will map to any kind of standard li-
brary of components except with great effort. Several of the reengineering
techniques we present address how to uncover these components after the
fact.

The key insight, however, is that the “right” design and organization
of your objects is not something that is or can be evident from the initial
requirements alone, but rather as a consequence of understanding how these
requirements evolve. The fact that the world is constantly changing should
not be seen purely as a problem, but as the key to the solution.

Any successful software system will suffer from the symptoms of
legacy systems. Object-oriented legacy systems are just successful object-
oriented systems whose architecture and design no longer responds to
changing requirements. A culture of continuous reengineering is a prereq-
uisite for achieving flexible and maintainable object-oriented systems.

8 CHAPTER 1. REENGINEERING PATTERNS

1.2 The Reengineering Lifecycle

Reengineering and reverse engineering are often mentioned in the same
context, and the terms are sometimes confused, so it is worthwhile to be
clear about what we mean by them. Chikofsky and Cross [CI92] define the
two terms as follows:

“Reverse Engineering is the process of analyzing a subject sys-
tem to identify the system’s components and their interrela-
tionships and create representations of the system in another
form or at a higher level of abstraction.”

That is to say, reverse engineering is essentially concerned with trying
to understand a system and how it ticks.

“Reengineering ... is the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent im-
plementation of the new form.”

Reengineering, on the other hand, is concerned with restructuring a sys-
tem, generally to fix some real or perceived problems, but more specifically
in preparation for further development and extension.

The introduction of term “reverse engineering” was clearly an invita-
tion to define “forward engineering”, so we have the following as well:

“Forward Engineering is the traditional process of moving from high-level
abstractions and logical, implementation-independent designs to the physi-
cal implementation of a system.”

How exactly this process of forward engineering can or should work
is of course a matter of great debate, though most people accept that the
process is iterative, and conforms to Barry Boehm’s so-called spiral model
of software development [Boe88]. In this model, successive versions of
a software system are developed by repeatedly collecting requirements,
assessing risks, engineering the new version, and evaluating the results.
This general framework can accommodate many different kinds of more
specific process models that are used in practice.

If forward engineering is about moving from high-level views of re-
quirements and models towards concrete realizations, then reverse engi-
neering is about going backwards from some concrete realization to more
abstract models, and reengineering is about transforming concrete imple-
mentations to other concrete implementations.

Figure 1.1 illustrates this idea. Forward engineering can be understood
as being a process that moves from high-level and abstract models and ar-

1.2. THE REENGINEERING LIFECYCLE 9

Requirements New requirements

Designs

Code

F
o

rw
a

rd
 e

n
g

in
e

e
rin

g

R
e
ve

rs
e

 e
n

g
in

e
e

ri
n

g
Reengineering

Figure 1.1: Forward, reverse and reengineering

tifacts to increasing concrete ones. Reverse engineering reconstructs higher-
level models and artifacts from code. Reengineering is a process that trans-
forms one low-level representation to another, while recreating the higher-
level artifacts along the way.

The key point to observe is that reengineering is not simply a matter of
transforming source code, but of transforming a system at all its levels. For
this reason it makes sense to talk about reverse engineering and reengi-
neering in the same breath. In a typical legacy system, you will find that
not only the source code, but all the documentation and specifications are
out of sync. Reverse engineering is therefore a prerequisite to reengineering
since you cannot transform what you do not understand.

Reverse engineering

You carry out reverse engineering whenever you are trying to understand
how something really works. Normally you only need to reverse engineer
a piece of software if you want to fix, extend or replace it. (Sometimes you
need to reverse engineer software just in order to understand how to use
it. This may also be a sign that some reengineering is called for.) As a
consequence, reverse engineering efforts typically focus on redocumenting
software and identifying potential problems, in preparation for reengineer-
ing.

10 CHAPTER 1. REENGINEERING PATTERNS

You can make use of a lot of different sources of information while
reverse engineering. For example, you can:

• read the existing documentation

• read the source code

• run the software

• interview users and developers

• code and execute test cases

• generate and analyze traces

• use various tools to generate high-level views of the source code and
the traces

• analyze the version history

As you carry out these activities, you will be building progressively
refined models of the software, keeping track of various questions and
answers, and cleaning up the technical documentation. You will also be
keeping an eye out for problems to fix.

Reengineering

Although the reasons for reengineering a system may vary, the actual tech-
nical problems are typically very similar. There is usually a mix of coarse-
grained, architectural problems, and fine-grained, design problems. Typi-
cal coarse-grained problems include:

• Insufficient documentation: documentation either does not exist, or is
inconsistent with reality.

• Improper layering: missing or improper layering hampers portability
and adaptability.

• Lack of modularity: strong coupling between modules hampers evo-
lution.

• Duplicated code: “copy, paste and edit” is quick and easy, but leads to
maintenance nightmares.

• Duplicated functionality: similar functionality is reimplemented by
separate teams, leading to code bloat.

The most common fine-grain problems occurring in object-oriented
software include:

1.2. THE REENGINEERING LIFECYCLE 11

• Misuse of inheritance: for composition, code reuse rather than poly-
morphism

• Missing inheritance: duplicated code, and case statements to select
behavior

• Misplaced operations: unexploited cohesion — operations outside in-
stead of inside classes

• Violation of encapsulation: explicit type-casting, C++ “friends” .

• Class abuse: lack of cohesion — classes as namespaces

Finally, you will be preparing the code base for the reengineering ac-
tivity by developing exhaustive test cases for all the parts of the system
that you plan to change or replace.

Reengineering similarly entails a number of interrelated activities. Of
course, one of the most important is to evaluate which parts of the system
should be repaired and which should be replaced.

The actual code transformations that are performed fall into a number
of categories. According to Chikofsky and Cross:

“Restructuring is the transformation from one representation
form to another at the same relative abstraction level, while
preserving the system’s external behavior.”

Restructuring generally refers to source code translation (such as the
automatic conversion from unstructured “spaghetti” code to structured,
or “goto-less”, code), but it may also entail transformations at the design
level.

Refactoring is restructuring within an object-oriented context. Martin
Fowler defines it this way:

“Refactoring is the process of changing a software system in
such a way that it does not alter the external behavior of the
code yet improves its internal structure.”

— Martin Fowler, [FBB+99]

It may be hard to tell the difference between software “reengineering”
and software “maintenance”. IEEE has made several attempts to define
software maintenance, including this one:

“the modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt
the product to a changed environment”

12 CHAPTER 1. REENGINEERING PATTERNS

Most people would probably consider that “maintenance” is routine
whereas “reengineering” is a drastic, major effort to recast a system, as
suggested by figure 1.

Others, however, might argue that reengineering is just a way of life.
You develop a little, reengineer a little, develop a little more, and so on
[Bec00]. In fact, there is good evidence to support the notion that a culture
of continuous reengineering is necessary to obtain healthy, maintainable
software systems.

Continuous reengineering, however, is not yet common practice, and
for this reason we present the patterns in this book in the context of a
major reengineering effort. Nevertheless, the reader should keep in mind
that most of the techniques we present will apply just as well when you
reengineer in small iterations.

1.3 Reengineering Patterns

Patterns as a literary form were introduced by the architect Christopher
Alexander in his landmark 1977 book, A Pattern Language. In this book,
Alexander and his colleagues presented a systematic method for archi-
tecting a range of different kinds of physical structures, from rooms to
buildings and towns. Each issue was presented as a recurring pattern, a
general solution which resolves a number of forces, but must be applied
in a unique way to each problem according to the specific circumstances.
The actual solution presented in each pattern was not necessarily so inter-
esting, but rather the discussion of the forces and tradeoffs consisted of the
real substance they communicated.

Patterns were first adopted by the software community as a way of
documenting recurring solutions to design problems. As with Alexan-
der’s patterns, each design pattern entailed a number of forces to be re-
solved, and a number of tradeoffs to consider when applying the pattern.
Patterns turn out to be a compact way to communicate best practice: not
just the actual techniques used by experts, but the motivation and ratio-
nale behind them. Patterns have since been applied to many aspects of
software development other than design, and particularly to the process of
designing and developing software.

The process of reengineering is, like any other process, one in which
many standard techniques have emerged, each of which resolves various
forces and may entail many tradeoffs. Patterns as a way of communicat-
ing best practice are particularly well-suited to presenting and discussing
these techniques.

1.3. REENGINEERING PATTERNS 13

Reengineering patterns codify and record knowledge about modifying
legacy software: they help in diagnosing problems and identifying weak-
nesses which may hinder further development of the system, and they aid
in finding solutions which are more appropriate to the new requirements.
We see reengineering patterns as stable units of expertise which can be
consulted in any reengineering effort: they describe a process without
proposing a complete methodology, and they suggest appropriate tools
without “selling” a specific one.

Many of the reverse engineering and reengineering patterns have some
superficial resemblance to design patterns, in the sense that they have
something to do with the design of software. But there is an importance
difference in that design patterns have to do with choosing a particular
solution to a design problem, whereas reengineering patterns have to do
with discovering an existing design, determining what problems it has, and
repairing these problems. As a consequence, reengineering patterns have
more to do with the process of discovery and transformation than purely with
a given design structure. For this reason the names of most of the patterns
in this book are process-oriented, like Always Have a Running Version
[p. 199], rather than being structure-oriented, like Adapter [p. 319] or Fa-
cade [p. 319].

Whereas a design pattern presents a solution for a recurring design
problem, a reengineering pattern presents a solution for a recurring reengi-
neering problem. The artifacts produced by reengineering patterns are not
necessarily designs. They may be as concrete as refactored code, or in the
case of reverse engineering patterns, they may be abstract as insights into
how the system functions.

The mark of a good reengineering pattern is (a) the clarity with which
it exposes the advantages, the cost and the consequences of the target ar-
tifacts with respect to the existing system state, and not how elegant the
result is, (b) the description of the reengineering process: how to get from
one state of the system to another.

Reengineering patterns entail more than code refactorings. A reengi-
neering pattern may describe a process which starts with the detection of
the symptoms and ends with the refactoring of the code to arrive at the
new solution. Refactoring is only the last stage of this process, and ad-
dresses the technical issue of automatically or semi-automatically modify-
ing the code to implement the new solution. Reengineering patterns also
include other elements which are not part of refactorings: they empha-
size the context of the symptoms, by taking into account the constraints
that reengineers are facing, and include a discussion of the impact of the
changes that the refactored solution may introduce.

14 CHAPTER 1. REENGINEERING PATTERNS

1.4 The Form of a Reengineering Pattern

In Figure 1.2 we see an example of a simple pattern that illustrates the
format we use in this book. The actual format used may vary slightly
from pattern to pattern, since they deal with different kinds of issues, but
generally we will see the same kind of headings.

The name of a pattern, if well-chosen, should make it easy to remember
the pattern and to discuss it with colleagues. (”I think we should Refactor
to Understand or we will never figure out what’s going on here.”) The
intent should communicate very compactly the essence of a pattern, and
tell you whether it applies to your current situation.

Many of the reengineering patterns are concerned with code transfor-
mation, in which case a diagram may be used to illustrate the kind of
transformation that takes place. Typically such patterns will additionally
include steps to detect the problem to be resolved, as well as code frag-
ments illustrating the situation before and after the transformation.

1.5 A Map of Reengineering Patterns

The patterns in this book are organized according to the reengineering
lifecycle presented earlier. In figure 3 we can see the chapters in this book
represented as clusters of patterns along the lifecycle. The diagram sug-
gests that the patterns may be applied in sequence. Though this may well
be the case, in practice you are more likely to iterate between reverse en-
gineering and reengineering tasks. The diagram is simplistic in the same
sense that the “waterfall” lifeycle is simplistic: it may be a useful way to
keep track of the different software engineering activities and their rela-
tionships, even though we know that they are not carried out sequentially
but iteratively.

Each cluster of patterns is presented as a simple “pattern language” —
a set of related patterns that may be combined to address a common set of
problems. As such, each chapter will typically start with a overview and a
map of the patterns in that chapter, suggesting how they may be related.

Setting Direction contains several patterns to help you determine
where to focus your reengineering efforts, and make sure you stay on
track. First Contact consists of a set of patterns that may be useful when
you encounter a legacy system for the first time. Initial Understanding
helps you to develop a first simple model of a legacy system, mainly in
the form of class diagrams. Detailed Model Capture helps you to develop
a more detailed model of a particular component of the system.

1.5. A MAP OF REENGINEERING PATTERNS 15

Figure 1.2: The format of a typical reengineering pattern

16 CHAPTER 1. REENGINEERING PATTERNS

Figure 1.3: A map of reengineering pattern clusters

Tests: Your Life Insurance! focusses on the use of testing not only to
help you understand a legacy system, but also to prepare it for a reengi-
neering effort. Migration Strategies help you keep a system running while
it is being reengineered, and increase the chances that the new system will
be accepted by its users. Detecting Duplicated Code can help you identify
locations where code may have been copied and pasted, or merged from
different versions of the software. Redistribute Responsibilities helps you
discover and reengineer classes with too many responsibilities. Transform
Conditionals to Polymorphism will help you to redistribute responsibili-
ties when an object-oriented design has been compromised over time.

Part II

Reverse Engineering

17

Chapter 2

Setting Direction

When you start a reengineering project, you will be pulled in many differ-
ent directions, by management, by the users, by your own team. It is easy
to be tempted to focus on the parts that are technically the most interest-
ing, or the parts that seem like they will be easiest to fix. But what is the
best strategy? How do you set the direction of the reengineering effort,
and how do you maintain direction once you have started?

Forces

• A typical reengineering project will be burdened with a lot of inter-
ests that pull in different directions. Technical, ergonomic, economic
and political considerations will make it difficult for you and your
team to establish and maintain focus.

• Communication in a reengineering project can be complicated by ei-
ther the presence or absence of the original development team.

• The legacy system will pull you towards a certain architecture that
may not be the best for the future of the system.

• You will detect many problems with the legacy software, and it will
be hard to set priorities.

• It is easy to get seduced by focussing on the technical problems that
interest you the most, rather than what is best for the project.

• It can be difficult to decide whether to wrap, refactor or rewrite a
problematic component of a legacy system. Each of these options
will address different risks, and will have different consequences for

19

20 CHAPTER 2. SETTING DIRECTION

Figure 2.1: Principles and guidelines to set and maintain direction in
reengineering project.

the effort required, the speed with which results can be evaluated,
and the kinds of changes that can be accommodated in the future.

• When you are reengineering the system, you may be tempted to
over-engineer the new solution to deal with every possible eventu-
ality.

Overview

Setting Direction is a cluster of patterns that can apply to any development
project, but also have special relevance to a reengineering effort. As such,
we have chosen a streamlined pattern format to describe them (Problem, So-
lution and Discussion).

You should Agree on Maxims in order to establish a common under-
standing within the reengineering team of what is at stake and how to
achieve it. You should Appoint a Navigator to maintain the architec-
tural vision. Everyone should Speak to the Round Table to maintain team
awareness of the state of the project.

To help you focus on the right problems and the critical decisions, it is
wise to tackle the Most Valuable First. Note that this will help you to In-
volve the Users [p. 185] and Build Confidence [p. 189]. In order to decide
whether to wrap, refactor or rewrite, you should Fix Problems, Not Symp-
toms. Change for change’s sake is not productive, so If It Ain’t Broke,

21

Don’t Fix It. Although you may be tempted to make the new system very
flexible and generic, it is almost always better to Keep It Simple.

22 CHAPTER 2. SETTING DIRECTION

2.1. AGREE ON MAXIMS 23

2.1 Agree on Maxims

Problem How do you establish a common sense of purpose in a team?

Solution Establish the key priorities for the project and identify guiding prin-
ciples that will help the team to stay on track.

Discussion Any reengineering project must cope with a large number
of conflicting interests. Management wants to protect its legacy by im-
proving competitiveness of its product and reducing maintenance costs.
Users want improved functionality without disrupting their established
work patterns. Developers and maintainers would like their jobs to be-
come simpler without being made obsolete. Your team members may each
have their own ideas about what a new system should look like.

Unless there is a clear understand about certain fundamental ques-
tions, such as What is our business model? or Who is responsible for what? you
risk that the team will be pulled apart by conflicting interests, and you will
not achieve your goal. Maxims are rules of conduct that can help steer a
project that is pulled in many directions. Goldberg and Rubin [GR95] give
numerous examples of maxims, such as “Everyone is responsible for testing
and debugging” and “You cannot do it right the first time.”

All of the patterns in this chapter can be read as maxims (rather than
as patterns), since they are intended to guide a team and keep it on track.
A maxim like Most Valuable First, for example, is intended to prevent a
team from squandering reengineering effort on technically interesting, but
marginal aspects that neither protect nor add value to the legacy system.
Agree on Maxims is itself a maxim, that can help a team detect when it is
rudderless.

A key point to remember is that any maxim may only have a limited
lifetime. It is important to periodically reevaluate the validity of any max-
ims that have been adopted. A project can get completely off track if you
agree on the wrong maxims, or the right ones but at the wrong time.

24 CHAPTER 2. SETTING DIRECTION

2.2. APPOINT A NAVIGATOR 25

2.2 Appoint a Navigator

Problem How do you maintain architectural vision during the course of com-
plex project?

Solution Appoint a specific person whose responsibility in role of navigator is
to ensure that the architectural vision is maintained.

Discussion The architecture of any system tends to degrade with time
as it becomes less relevant to new, emerging requirements. The challenge
of a reengineering project is to develop a new architectural vision that will
allow the legacy system to continue to live and evolve for several more
years. Without a navigator, the design and architecture of the old system
will tend to creep into and take over the new one.

You should tackle the Most Valuable First so you can determine what
are the most critical issues that the new architecture should address, and
test those aspects early in the reengineering project.

A sound architecture will help you to Fix Problems, Not Symptoms.

Alan O’Callaghan also refers to the navigator as the “Keeper of the
Flame” [ODF99].

26 CHAPTER 2. SETTING DIRECTION

2.3. SPEAK TO THE ROUND TABLE 27

2.3 Speak to the Round Table

Problem How do you keep your team synchronized?

Solution Hold brief, regular round table meetings.

Discussion Knowledge and understanding of a legacy system is always
distributed and usually hidden. A reengineering team is also performing
archeology. The information that is extracted from a legacy system is a
valuable asset that must be shared for it to be exploited.

Nobody has time for meetings, but without meetings, communica-
tion is ad hoc and random. Regular, focussed, round table meetings can
achieve the goal of keeping team members synchronized with the current
state of affairs. Round table meetings should be brief, but everyone must
be required to contribute. A simple approach is to have everyone say what
they have done since the last meeting, what they have learned or perhaps what
problems they have encountered, and what they plan to do until the next meet-
ing.

Round table meetings should be held at least once a week, but perhaps
as often as daily.

Minutes of a meeting are important to maintain a log of progress, but
keeping minutes can be an unpleasant task. To keep it simple, record only
decisions taken and actions to be performed by a certain deadline.

Beck and Fowler recommend “Stand Up Meetings” (meetings without
chairs) as a way to keep round table meetings short [BF01].

28 CHAPTER 2. SETTING DIRECTION

2.4. MOST VALUABLE FIRST 29

2.4 Most Valuable First

Problem Which problems should you focus on first?

Solution Start working on the aspects which are most valuable to your cus-
tomer.

Discussion A legacy system may suffer from a great number of prob-
lems, some of which are important, and others which may not be at all
critical for the customer’s business. By focussing on the most valuable
parts first, you increase the chance that you will identify the right issues
at stake, and that you will be able to test early in the project the most im-
portant decisions, such as which architecture to migrate to, or what kind
of flexibility to build into the new system.

By concentrating first on a part of the system that is valuable to the
client, you also maximize the commitment that you, your team members
and your customers will have in the project. You furthermore increase
your chances of having early positive results that demonstrate that the
reengineering effort is worthwhile and necessary.

Nevertheless there are a number of difficulties in applying this pattern:

Who is your customer?

• There are many stakeholders in any legacy system, but only one of
these is your customer. You can only set priorities if you have a clear
understanding who should be calling the shots.

How do you tell what is valuable?

• It can be difficult to assess exactly what is the most valuable as-
pect for a customer. Once a company asked us to assess if a sys-
tem could be modularized because they wanted to switch their ar-
chitecture. After long discussions with them, however, it turned out
that in fact they really wanted to have a system where business rules
could be more explicit, a system that new programmers could un-
derstand more easily to reduce the risk that only one programmer
understands it.

• Try to understand the customer’s business model. This will tell you
how to assess the value of the various aspects of the system. Every-
thing that does not relate directly to the business model is likely to
be a purely technical side-issue.

30 CHAPTER 2. SETTING DIRECTION

• Try to determine what measurable goal the customer wants to obtain.
This must be an external manifestation of some aspect of the sys-
tem or its evolution, for example, better response time, faster time to
market of new features, easier tailoring to individual clients needs.

• Try to understand whether the primary goal is mainly to protect an
existing asset, or rather to add value in terms of new features or capa-
bilities.

• Examine the change logs and determine where the most activity has
historically been in the system. The most valuable artifact is often
the one which receives the most change requests (see Learn from the
Past [p. 141]).

• If the customer is unwilling or unable to set priorities, then play the
Planning Game [BF01]: collect requirements from all the stakeholders,
and make a ballpark estimate of the effort required for each identifi-
able task. Given an initial budget of effort for an early first milestone,
ask the customer to select tasks that will fit in the budget. Repeat this
exercise at each iteration.

• Beware of changing perceptions. Initially the customer may draw your
attention to certain symptoms of problems with the legacy system,
rather than the problems themselves (see Fix Problems, Not Symp-
toms [p. 33]).

Isn’t there a risk of raising expectations too high?

• If you fail to deliver good initial results, you will learn a lot, but you
risk losing credibility. It is therefore critical to choose carefully initial
tasks which not only demonstrate value for the customer, but also
have a high chance of success. Therefore, take great care in estimat-
ing the effort of the initial tasks.

• The key to success is to plan for small, frequent iterations. If the
initial task identified by the customer is too large to demonstrate ini-
tial results in a short time frame (such as two weeks), then insist on
breaking it down into smaller subtasks that can be tackled in shorter
iterations. If you are successful in your first steps, you will certainly
raise expectations, but this is not bad if the steps stay small.

What if the most valuable part is a rat’s nest?

• Unfortunately, reengineering a legacy system is often an act of des-
peration, rather than a normal, periodic process of renovation. It
may well be that the most valuable part of the system is also the part
that is the most complex, impenetrable and difficult to modify and
debug.

2.4. MOST VALUABLE FIRST 31

• High changes rates may also be a sign of large numbers of software
defects. 80% of software defects typically occur in 5% of the code,
thus the strategy to “Renovate the Worst First” [Dav95] can pay off
big by eliminating the most serious source of problems in the system.
There are nevertheless considerable risks:

– it may be hard to demonstrate early, positive results,
– you are tackling the most complicated part of the system with

little information,
– the chances are higher that you will fall flat on your face.

• Determine whether to wrap, refactor or rewrite the problematic com-
ponent by making sure you Fix Problems, Not Symptoms.

Once you have decided what is the most valuable part of the system to
work on, you should Involve the Users [p. 185] in the reengineering effort
so you can Build Confidence [p. 189]. If you Migrate Systems Incremen-
tally [p. 191], the users will be able to use the system as it is reengineered
and provide continuous feedback.

32 CHAPTER 2. SETTING DIRECTION

2.5. FIX PROBLEMS, NOT SYMPTOMS 33

2.5 Fix Problems, Not Symptoms

Problem How can you possibly tackle all the reported problems?

Solution Address the source of a problem, rather than particular requests of
your stakeholders.

Discussion Although this is a very general principle, it has a particu-
lar relevance for reengineering. Each stakeholder has a different view-
point of the system, and may only see part of it. The problems they want
you to fix may just be manifestations of deeper problems in the system.
For example, the fact that you do not get immediate feedback for cer-
tain user actions may be a consequence of a dataflow architecture. Imple-
menting a workaround may just aggravate the problem and lead to more
workarounds. If this is a real problem, you should migrate to a proper
architecture.

A common difficulty during a reengineering effort is to decide whether
to wrap, refactor or rewrite a legacy component. Most Valuable First will
help you determine what priority to give to problems in the system, and
will tell you which problems are on your critical path. Fix Problems, Not
Symptoms tells you to focus on the source of a problem, and not its mani-
festation. For example:

• If the code of a legacy component is basically stable, and problems
mainly occur with changes to clients, then the problem is likely to
be with the interface to the legacy component, rather than its im-
plementation, no matter how nasty the code is. In such a case, you
should consider applying Present the Right Interface [p. 207] to just
fix the interface.

• If the legacy component is largely defect-free, but is a major bottle-
neck for changes to the system, then it should probably be refactored
to limit the effect of future changes. You might consider applying
Split Up God Class [p. 263] to migrate towards a cleaner design.

• If the legacy component suffers from large numbers of defects, con-
sider applying Make a Bridge to the New Town [p. 203] as a strategy
for migrating legacy data to the new implementation.

This pattern may seem to conflict with If It Ain’t Broke, Don’t Fix It,
but it doesn’t really. Something that is not really “broken” cannot really
be the source of a problem. Wrapping, for example, may seem to be a

34 CHAPTER 2. SETTING DIRECTION

workaround, but it may be the right solution if the real problem is just
with the interface to a legacy component.

2.6. IF IT AIN’T BROKE, DON’T FIX IT 35

2.6 If It Ain’t Broke, Don’t Fix It

Problem Which parts of a legacy system should you reengineer and which
should you leave as they are?

Solution Only fix the parts that are “broken” — those that can no longer be
adapted to planned changes.

Discussion Change for change’s sake is not necessarily a good thing.
There may well be parts of the legacy system that may be ugly, but work
well and do not pose any significant maintenance effort. If these compo-
nents can be isolated and wrapped, it may never be necessary to replace
them.

Anytime you “fix” something, you also risk breaking something else
in the system. You also risk wasting precious time and effort on marginal
issues.

In a reengineering project, the parts that are “broken” are the ones that
are putting the legacy at risk:

• components that need to be frequently adapted to meet new require-
ments, but are difficult to modify due to high complexity and design
drift,

• components that are valuable, but traditionally contain a large num-
ber of defects.

Software artifacts that are stable and do not threaten the future of the
legacy system are not “broken” and do not need to be reengineered, no
matter what state the code is in.

36 CHAPTER 2. SETTING DIRECTION

2.7. KEEP IT SIMPLE 37

2.7 Keep It Simple

Problem How much flexibility should you try to build into the new system?

Solution Prefer an adequate, but simple solution to a potentially more general,
but complex solution.

Discussion This is another general principle with special significance for
reengineering. We are bad at guessing how much generality and flexibility
we really need. Many software systems become bloated as every conceiv-
able feature is added to them.

Flexibility is a double-edged sword. An important reengineering goal
is to accommodate future change. But too much flexibility will make the
new system so complex that you may actually impede future change.

Some people argue that it is necessary to “plan for reuse”, hence to
make an extra effort to make sure that every software entity that might
conceivably by useful to somebody else is programmed in the most gen-
eral way possible, with as many knobs and buttons as possible. This rarely
works, since it is pretty well impossible to anticipate who will want to use
something for what purpose. The same holds for end-user software.

“Do the simplest thing that will work” is a maxim of Extreme Pro-
gramming [Bec00] that applies to any reengineering effort. This strategy
reinforces Involve the Users [p. 185] and Build Confidence [p. 189] since it
encourages you to quickly introduce simple changes that users can evalu-
ate and respond to.

When you do the complex thing, you will probably guess wrong (in
terms of what you really need) and it will be harder to fix. If you keep
things simple, you will be done faster, get feedback faster, and recover
from errors more easily. Then you can make the next step.

38 CHAPTER 2. SETTING DIRECTION

Chapter 3

First Contact

You are part of a team developing a software system named proDoc which
supports doctors in their da The main functional requirements concern
(i) maintaining patient files and (ii) keeping track of the money to be
paid by patients and health insurances. The health care legislation in
Switzerland is quite complicated and changes regularly, hence there are
few competitors to worry about. Nevertheless, a fresh start-up company
has recently acquired considerable market-share with a competing prod-
uct named XDoctor. The selling features of XDoctor are its platform inde-
pendency and its integration with the internet. The system offers a built-in
e-mail client and web-browser. XDoctor also exploits the internet for the
transaction processing with the health insurances.

To ensure its position in the market, your company has purchased
XDoctor and now wants to recover as much as possible from the deal.
In particular, they want to lift the internet functionality out of XDoctor to
reuse it into proDoc. You are asked to make a first evaluation and develop
a plan on how to merge the two products into one. At the outset, there
is very little known about the technical details of the competing product.
From the original development team of four persons, only one has joined
your company. His name is Dave and he has brought a large box to your
office containing lots of paper (the documentation?) and two CDs. The
first is the XDoctor installation disk containing an installer for Windows,
MacOS and Linux. The other contains about 500,000 lines of Java code
and another 10,000 lines of C code. Looking kind of desperately at this
box sitting on your desk, you’re wondering “Where on earth do I start?”

39

40 CHAPTER 3. FIRST CONTACT

Forces

It is surprising how often reengineering projects get started. Not only
does it happen after a fusion of two companies, but we also encountered
projects in which code libraries were obtained from companies that later
went bankrupt, or in which complete maintenance teams quit their project
leaving behind a very valuable but incomprehensible piece of code. Of
course, the obvious question to ask is “Where do I start?” It turns out
that this is one of the crucial questions to answer during a reengineering
project, which is why we devote an entire chapter to its answer.

All the patterns in this cluster can be applied to the very early stages
of a reengineering project: you’re facing a system that is completely new
for you, and within a few days you must determine whether something
can be done with it and present a plan how to proceed. Making such an
initial assessment is difficult, however, because you quickly need accurate
results while considering the long-term effects of your decisions. To deal
with the inherent conflict between quick, accurate and longer term effects,
the patterns in this cluster must resolve the following forces.

• Legacy systems are large and complex. Scale is always an issue when
dealing with legacy systems.1 However, there is only so much a sin-
gle reengineering team can do and when the legacy system is too big
or too complex you can’t do the job in one shot. Consequently, split
the system into manageable pieces, where a manageable piece is one you can
handle with a single reengineering team.

How much a single team can manage varies with the goal of the
reengineering project, the state of the original system, the experience
and skills in your team and the culture in your organization. Our
teams consisted of three to five persons and they could handle be-
tween 500.000 and a million lines of code. However, these figures
will certainly have to be adapted for the reengineering project you
are facing. As a rule of the thumb, assume that a single team can
reengineer as much code as they can write from scratch. Improve
your estimates during the reengineering project by keeping logs of
how much your team actually reengineered.

If you need to split the code up, stay as close as possible to cur-
rent system structure and the organization of the maintenance team.
Once you have a good understanding of the system structure, con-
sider alternatives which are better suited for the project goal.

1During the FAMOOS project we faced systems ranging between 500.000 lines of C++ and
2.5 million lines of Ada.

41

• Time is scarce. Wasting time early on in a project has severe conse-
quences later on. This is especially relevant during reverse engineer-
ing, because there you feel uncertain and then it is tempting to start
an activity that will keep you busy for a while instead of address-
ing the root of the problem. Consequently, consider time as your most
precious resource. Therefore, defer all time-consuming activities until
later and use the first days of the project to assess the feasibility of
the project’s goals. All patterns in this cluster are meant to quickly
identify the opportunities and risks for your project and as such will
help you set the overall direction of the project.

• First impressions are dangerous. Making important decisions based on
incomplete knowledge implies that there is a chance you will make
the wrong decision. There is no way to avoid that risk during your
first contact with a system, however you can minimize its impact if
you always double-check your sources.

• People have different agendas. Normally, you will join a group of peo-
ple where several members will have lots of experience with the
system to be reengineered. Perhaps members of the original de-
velopment team are still available or maybe the reengineering team
includes persons who have been maintaining the system for some
time. At least there will be end users and managers who believe
enough in this system to request a reengineering project. You are
supposed to complement the team with your reengineering skills
and expertise, hence you should know who you are dealing with.

Typically, your new colleagues will fall into three categories. The
first category are the faithful, the people who believe that reengineer-
ing is necessary and who thrust that you are able to (help them)
do it. The second is the category of the sceptical, who believe this
whole reengineering business is just a waste of time either because
they want to protect their jobs or either because they think the whole
project should start again from scratch. The third category is the cate-
gory of the fence sitters, who do not have a strong opinion on whether
this reengineering will pay off, so they just wait and see what hap-
pens. Consequently, in order to make the project a success, you must keep
convincing the faithful, gain credit with the fence sitters and be wary of the
sceptics.

Overview

Wasting time is the largest risk when you have your first contact with a
system, therefore these patterns should be applied during a short time
span, say one week. After this week you should grasp the main issues and

42 CHAPTER 3. FIRST CONTACT

Figure 3.1: Assess the feasibility of the project during your First Contact
with the system.

based on that knowledge plan further activities, or — when necessary —
cancel the project.

The patterns Chat with the Maintainers and Interview During Demo
will help you get acquainted with the people involved. As a rule of the
thumb, spend four days to gather information and use the last day of
the week to compile all this information into a first project plan. There
is no strict order in which to apply the patterns, although the order as sug-
gested by the sequence in the book is kind of typical. Nevertheless, we
have often find ourselves combining fragments of these patterns because
of the necessity to double-check. For instance, during a second meeting
with the maintainers we usually start with an Interview During Demo but
ask questions about what we have learned from Read all the Code in One
Hour and Skim the Documentation. Also, after an interview we quickly
check the source code and documentation to confirm what has been said.

In certain situations we have experienced that some patterns are not
applicable due to a lack of resources. For instance, if all the maintainers
have left the company you cannot Chat with the Maintainers. Also, cer-
tain systems lack an external user-interface and then it is pointless to try
an Interview During Demo with an end-user. This isn’t necessarily a prob-
lem, because some of these patterns may be irrelevant for your project goal
anyway. However, the absence of resources is an extra risk to the project
and it should be recorded as such in the first project plan.

43

What Next

Once you have the necessary information, it is time to compile the first
project plan. Such a plan is very similar to the plans you normally use
when launching a project and the standard document templates used in
your company should therefore be used. When necessary, bend the rules
to include at least the following items.

• Project Scope. Prepare a short (half a page) description of the project,
including its context, its goals and the criteria that will be used to
verify whether you reached those goals. Involve the Users [p. 185]
and Agree on Maxims [p. 23] to write this part of the plan.

• Opportunities. Identify those factors you expect will contribute to
achieve the project goals. List the items that you have discovered
during the first contact, such as the availability of skilled maintainers
and power-users, the readability of the source code or the presence
of up-to date documentation.

• Risks. Consider elements that may cause problems during the course
of the project. List those items that you did not find or where the
quality was inferior, such as missing code libraries or the absence
of test suites. If possible, include an assessment for the likelihood
(unlikely, possible, likely) and the impact (high, moderate, low) for
each risk. Special attention must be paid to the critical risks, i.e. the
ones that are possible/likely and have a moderate/high impact or
the ones that are likely but have a low impact.

• Go / No-go decision. At some point you will have to decide whether
the project should be continued or cancelled. Use the above oppor-
tunities and risks to argue that decision.

• Activities. (In case of a “go” decision) Prepare a fish-eye view of the
upcoming period, explaining how you intend to reach the project
goal. In a fish-eye view, the short term activities are explained in
considerable detail while for the later activities a rough outline is
sufficient. Most likely, the short term activities will correspond to the
patterns described in Initial Understanding. For the later activities
check the subsequent chapters.

The list of activities should exploit the opportunities and reduce the
(critical) risks. For instance, if you list the presence of up-to date
documentation as an opportunity and the absence of a test suite as a
critical risk, then you should plan an activity which will build a test
suite based on the documentation.

44 CHAPTER 3. FIRST CONTACT

3.1. CHAT WITH THE MAINTAINERS 45

3.1 Chat with the Maintainers

Intent Learn about the historical and political context of your project through
discussions with the people maintaining the system.

Problem

How do you get a good perspective on the historical and political context
of the legacy system you are reengineering?

This problem is difficult because:

• Documentation, if present, typically records decisions about the so-
lution, not about the factors which have influenced that solution.
Consequently, the important events in the history of the system (i.e.,
its historical context) are rarely documented.

• The system is valuable (otherwise they wouldn’t bother to reengi-
neer it) yet management has lost control (otherwise they wouldn’t
need to reengineer the system). At least some of the people related
issues concerning the software system are messed up, thus the polit-
ical context of a legacy system is problematic by nature.

• Persons working with the system might mislead you. Sometimes
people will deliberately deceive you, especially when they are re-
sponsible for the problematic parts of the system or when they want
to protect their jobs. Most of the time they will mislead you out of ig-
norance, especially when chief developers are now working on other
projects and the junior staff are the only ones left for system mainte-
nance.

Yet, solving this problem is feasible because:

• You are able to talk to the maintenance team. While they might not
know everything about the original system context, they most likely
know a great deal about how the system got to its current state.

Solution

Discuss with the system maintainers. As technical people who have been
intimately involved with the legacy system, they are well aware of the
system’s history and the people-related issues that influenced that history.

To avoid misleading information, treat the maintainers as “brothers in
arms”. Try to strike a kind of bargain where you will make their job easier

46 CHAPTER 3. FIRST CONTACT

(more rewarding, more appreciated, — whatever is most likely to convince
them) if they will just take some time to explain you about what they are
doing. This has the extra benefit that it will gain you the respect you need
for the later phases of your reengineering project.

Hints

Here are some questions that may help you while discussing with the
maintainers. It is best to ask these questions during an informal meeting
(no official minutes, no official agenda) although you should be prepared
to make notes after the meeting to record your main conclusions, assump-
tions and concerns.

• What was the easiest bug you had to fix during the last month? And
what was the most difficult one? How long did it take you to fix each
of them? Why was it so easy or so difficult to fix that particular bug?

Those kinds of questions are good starters because they show that
you are interested in the maintenance work. Answering the ques-
tions also gives the maintainers the opportunity to show what they
excel at, which will make them less protective of their job. Finally, the
answers will provide you with some concrete examples of mainte-
nance problems you might use in later, more high-level discussions.

• How does the maintenance team collect bug reports and feature re-
quests? Who decides which request gets handled first? Who decides
to assign a bug report or feature request to a maintainer? Are these
events logged in some kind of database? Is there a version or config-
uration management system in place?

These questions help to understand the organization of the main-
tenance process and the internal working habits of the maintenance
team. As far as the political context concerns, it helps to assess the re-
lationship within the team (task assignment) and with the end users
(collection of bug reports).

• Who was part of the development/maintenance team during the
course of years? How did they join/leave the project? How did
this affect the release history of the system?

These are questions which directly address the history of the legacy
system. It is a good idea to ask about persons because people gen-
erally have a good recollection of former colleagues. By afterwards
asking how they joined or left the project, you get a sense for the
political context as well.

• How good is the code? How trustworthy is the documentation?

3.1. CHAT WITH THE MAINTAINERS 47

This question is especially relevant to see how well the maintenance
team itself can assess the state of the system. Of course you will have
to verify their claims yourself afterwards (see Read all the Code in
One Hour and Skim the Documentation).

• Why is this reengineering project started? What do you expect from
this project? What will you gain from the results?

It is crucial to ask what the maintainers will gain from the reengi-
neering project as it is something to keep in mind during the later
phases. Listen for differences — sometimes subtle — in what man-
agement told you they expect from the project and what the main-
tainers expect from it. Identifying the differences will help you get a
sense of the political context.

Tradeoffs

Pros

• Obtains information effectively. Most of the significant events in the
life-time of a software system are passed on orally. Discussing with
the maintainers is the most effective way to tap into this rich infor-
mation source.

• Get acquainted with your colleagues. By discussing with the maintain-
ers you have a first chance to appraise your colleagues. As such,
you’re likely to gain the necessary credibility that will help you in
the later phases of the reengineering project.

Cons

• Provides anecdotal evidence only. The information you obtain is anec-
dotal at best. The human brain is necessarily selective regarding
which facts it remembers, thus the recollection of the maintainers
may be insufficient. Worse, the information may be incomplete to
start with, since the maintainers are often not the original develop-
ers of the system. Consequently, you will have to complement the
information you obtained by other means (see for instance Skim the
Documentation, Interview During Demo, Read all the Code in One
Hour and Do a Mock Installation).

48 CHAPTER 3. FIRST CONTACT

Difficulties

• People protect their jobs. Some maintainers may not be willing to pro-
vide you with the information you need because they are afraid of
losing their jobs. It’s up to you to convince them that the reengineer-
ing project is there to make their job easier, more rewarding, more
appreciated. Consequently, you should ask the maintainers what
they expect from the reengineering project themselves.

• Teams may be unstable. Software maintenance is generally considered
a second-class job, often left to junior programmers and often lead-
ing to a maintenance team which changes frequently. In such a situ-
ation, the maintainers cannot tell you about the historical evolution
of a software system, yet it tells you a great deal about its political
context. Indeed, you must be aware of such instability in the team,
as it will increase the risk of your project and reduce the reliability of
the information you obtain. Consequently, you should ask who has
been part of the development/maintenance team over the course of
the years.

Example

While taking over XDoctor, your company has been trying to persuade the
original development team to stay on and merge the two software systems
into one. Unfortunately, only one member — Dave — has agreed to stay
and the three others have left for another company. As it is your job to
develop a plan for how to merge the two products, you invite Dave for
lunch to have an informal chat about the system.

During this chat you learn a great deal. The good news is that Dave
was responsible for implementing the internet communication protocols
handling the transactions with the health insurances. As this was one of
the key features lacking in your product, you’re happy to have this ex-
perience added to your team. More good news is that Dave tells you his
former colleagues were quite experienced in object-oriented technology,
so you suspect a reasonable design and readable source code. Finally, you
hear that few bug reports were submitted and that most of them have
been handled fast. Likewise, the list of pending product enhancements
exists and is reasonably small. So you conclude that the customers are
quite happy with the product and that your project will be strategically
important.

The not so good news is that Dave is a hard core C-programmer who
was mainly ignored by his colleagues and left out of the design activity
for the rest of the system. When you ask about his motives to stay in the

3.1. CHAT WITH THE MAINTAINERS 49

project he tells you that he originally joined because he was interested to
experiment with internet technology but that he is kind of bored with the
low-level protocol stuff he has been doing and wants to do more interest-
ing work. Of course, you ask him what he means with “more interesting”
and he replies that he wants to program with objects.

After the discussion, you make a mental note to check the source code
to assess the quality of the code Dave has written. You also want to have a
look at the list of pending bugs and requests for enhancements to compare
the functionality of the two products you are supposed to merge. Finally,
you consider contacting the training department to see whether they have
courses on object-oriented programming as this may be a way to motivate
your new team member.

Rationale

“The major problems of our work are not so much technological as
sociological in nature.”

— Tom De Marco, [DL99]

Accepting the premise that the sociological issues concerning a soft-
ware project are far more important then the technological ones, any
reengineering project must at least know the political context of the sys-
tem under study.

“Organizations which design systems are constrained to produce de-
signs which are copies of the communications structure of these orga-
nizations.”

— Melvin Conway, [Con68]

Conway’s law is often paraphrased as: “If you have 4 groups working
on a compiler; you’ll get a 4-pass compiler”

One particular reason why it is important to know about the way the
development team was organized, is because it is likely that this structure
will somehow reflect the structure of the source code.

A second reason is that before formulating a plan for a reengineering
project, you must know the capabilities of your team members as well
as the peculiarities of the software system to be reverse engineered. Dis-
cussing with the maintainers is one of the ways — and given the “time is
scarce” principle, a very efficient one — to obtain that knowledge.

“Maintenance fact #1. In the late ‘60s and throughout the 70’s,
production system support and maintenance were clearly treated as

50 CHAPTER 3. FIRST CONTACT

second-class work.
Maintenance fact #2. In 1998, support and maintenance of produc-
tion systems continues to be treated as second-class work.”

— Rob Thomsett, [Tho98]

While talking with the maintainers, you should be aware that software
maintenance is often considered second-class work. If that’s the case for
the maintenance team you are talking with, it may seriously disturb the
discussion. Either because the maintenance team has changed frequently,
in which case the maintainers themselves are unaware of the historical
evolution. Or because the people you discuss with are very protective
about their job, in which case they will not tell you what you need to know.

Known uses

During our experience with reengineering projects we made it a habit to
kick-off the project during a meeting with the maintenance team. Only in
retrospect did we understand how crucial such a meeting is to build up
the trust required for the rest of the project. We learned the hard way that
maintainers are very proud about their job and very sensitive to critique.
Therefore, we emphasize that such a kick-off meeting must be “maintainer
oriented”, i.e. aimed to let the maintainers show what they do well and
what they want to do better. Coming in with the attitude that you — the
newcomer — will teach these stupid maintainers how to do a proper job
will almost certainly lead to disasters.

“The RT-100 — was developed by a third-party software vendor in
the late 1980s and acquired by Nortel in 1990. For the next three
years Nortel enhanced and maintained it before outsourcing it to an-
other vendor to be systematically rewritten. This effort failed and the
system was returned to Nortel in mid 1994. By this time, the original
design team has been disbanded and scattered, and the product’s six
customers organizations were quite unhappy.
RT-100 was assigned to Nortel’s Atlanta Technology Park laboratory.
No staff members there had any experience with ACD software, and,
due to another project’s cancellation, staff morale was quite low.”

— Spencer Rugaber and Jim White, [RW98]

The above quote is from a paper which describes the story of a reengi-
neering project, and depicts very well the typical desperation a reengineer-
ing project had to start with. Yet — as described in the paper itself — this
early assessment of the historical and political context made it possible for

3.1. CHAT WITH THE MAINTAINERS 51

the project to succeed, because they knew very well which factors would
make the stakeholders happy and consequently could motivate the new
reengineering team.

In one of the case-studies of the DESEL project (Designing for Ease
of System Evolution), Stephen Cook reports that it is crucial to talk to
the maintainers as they know best which aspects of the domain are likely
to change and which ones are likely to remain stable [CHR01]. As such,
the maintainers have submerged knowledge about how the system could
have been built, knowledge which is seldom documented. Yet, during this
discussion one must emphasize a “design for evolution” mind-set, to force
the maintainers to detach themselves from the latest problems they have
been solving.

Related Patterns

There are several pattern languages which explicitly deal with the way
a software development team is organized [Cop95] [Har96] [Tay00]
[BDS+00]. Although meant for a forward engineering situation, it is good
to be aware of them while discussing with the maintainers, because it may
help you assess the situation more quickly.

What Next

During the discussion, you should avoid jumping to conclusions. There-
fore, make sure that whatever you learn out of the discussion is verified
against other sources. Typically these sources are the people working with
the system (Interview During Demo), the documentation (Skim the Docu-
mentation) and the system itself (i.e., Read all the Code in One Hour & Do
a Mock Installation).

With this verification, you have a solid basis to write down an initial
plan for tackling the legacy system, including the possibility to cancel the
project altogether. The discussion with the maintainers will influence this
plan in various ways. First of all, you have a sense for the willingness of
the maintenance team to cooperate, which will affect the work plan con-
siderably. Second, you know the history of the system, including those
parts that make it valuable and those events that caused most of the main-
tenance problems. Your plan will aim to resurrect the valuable parts and
tackle those maintenance problems. Third, you have a sense for how the
maintenance team communicates with the other stakeholders, which is
important to get the plan accepted.

52 CHAPTER 3. FIRST CONTACT

3.2. READ ALL THE CODE IN ONE HOUR 53

3.2 Read all the Code in One Hour

Intent Assess the state of a software system by means of a brief, but intensive
code review.

Problem

How can you get a first impression of the quality of the source code?

This problem is difficult because:

• The quality of the source code will vary quite a lot, depending on
the people that have been involved in the development and mainte-
nance of the system.

• The system is large, so there is too much data to inspect for an accu-
rate assessment.

• You’re unfamiliar with the software system, so you do not know how
to filter out what’s relevant.

Yet, solving this problem is feasible because:

• You have reasonable expertise with the implementation language be-
ing used, thus you can recognize programming idioms and code
smells.

• Your reengineering project has a clear goal, so you can assess the kind
of code quality required to obtain that goal.

Solution

Grant yourself a reasonably short amount of study time (i.e., approxi-
mately one hour) to read the source code. Make sure that you will not
be disturbed (unplug the telephone and disconnect your e-mail) and take
notes sparingly to maximize the contact with the code.

After this reading session, produce a short report about your findings,
including

• a general assessment of whether reengineering seems feasible and
why (not);

• entities which seem important (i.e., classes, packages, · · ·);
• suspicious coding styles discovered (i.e., “code smells” [FBB+99]);

54 CHAPTER 3. FIRST CONTACT

• parts which must be investigated further (i.e., tests).

Keep this report short, and name the entities like they are mentioned
in the source code.

Hints

The “time is scarce” principle demands some preparation. A checklist
might help you focus your effort during the reading session. Such a check-
list may be compiled from various sources.

• The development team may have employed code reviews as part of
their quality assurance. If they did, make sure you incorporate the
checklists used during the reviews. If they didn’t, try some generic
checklists used to review the kind of code you are dealing with.

• Some development teams applied coding styles and if they did, it is
good to be aware of them. Naming conventions especially are crucial
to scan code quickly.

• The programmers might have used coding idioms (i.e., C++ [Cop92]
[Mey98] [Mey96]; Smalltalk [Bec97]) which help you recognize typi-
cal language constructs.

• You probably have some questions that you would like an answer to.

Below are some additional items you might add to your checklist be-
cause they provide good entry points for further examination.

• Functional tests and unit tests convey important information about the
functionality of a software system. They can help to verify whether
the system is functioning as expected, which is very imported during
reengineering (see Tests: Your Life Insurance!).

• Abstract classes and methods reveal design intentions.

• Classes high in the hierarchy often define domain abstractions; their
subclasses introduce variations on a theme.

• Occurrences of the Singleton [p. 321] pattern may represent informa-
tion that is constant for the entire execution of a system.

• Surprisingly large structures often specify important chunks of func-
tionality.

• Comments reveal a lot about the design intentions behind a particular
piece of code, yet may often be misleading.

3.2. READ ALL THE CODE IN ONE HOUR 55

Tradeoffs

Pros

• Start efficiently. Reading the code in a short amount of time is very
efficient as a starter. Indeed, by limiting the time and yet forcing
yourself to look at all the code, you mainly use your brain and coding
expertise to filter out what seems important.

• Judge sincerely. By reading the code directly you get an unbiased view
of the software system including a sense for the details and a glimpse
on the kind of problems you are facing. Because the source code
describes the functionality of the system — no more, no less — it is
the only accurate source of information.

• Learn the developers vocabulary. Acquiring the vocabulary used inside
the software system is essential to understand it and communicate
about it with other developers. This pattern helps to acquire such a
vocabulary.

Cons

• Obtain low abstraction. Via this pattern, you will get some insight
in the solution domain, but only very little on how these map onto
problem domain concepts. Consequently, you will have to comple-
ment the information you obtained with other, more abstract repre-
sentations (for instance Skim the Documentation and Interview Dur-
ing Demo).

Difficulties

• Does not scale. Reading all the code does not scale very well, from
our experience a rate of 10,000 lines of code per hour is reasonable.
When facing large or complex code, don’t try to spend more time to
read more code as intensive reading is most effective when done is
short bursts of time (no more than 2 hours). Instead, if you have a
clear criterion to split the source code, try to pass a series of sessions.
Otherwise, just go through all of the code and mark those parts that
seem more important than others (based on Chat with the Maintain-
ers) and then read in different sessions.

However, given the “Time is Scarce” principle, you should force
yourself to be brief. Consequently, when dealing with large or com-
plex code, don’t bother too much with the details but remind your-

56 CHAPTER 3. FIRST CONTACT

self of the goal of reading the code, which is an initial assessment of
the suitability for reengineering.

• Comments may mislead you. Be careful with comments in the code.
Comments can help you in understanding what a piece of software
is supposed to do. However, just like other kinds of documenta-
tion, comments can be outdated, obsolete or simply wrong. Conse-
quently, when finding comments mark on your checklist whether it
seems helpful and whether it seems outdated.

Example

From the discussion with Dave (the sole person left from the original de-
velopment team and the one responsible for the low-level C-code) you
recall that their system was mainly written in Java, with some low-level
parts written in C and the database queries in SQL. You have experience
with all these languages, so you are able to read the code.

You start by preparing a check-list and besides the normal items (cod-
ing styles, tests, abstract classes and methods, classes high in the hierarchy,
· · ·) you add a few items concerning some questions you want resolved.
One of them is “Readability of the C-code”, because you want to verify the
coding style of Dave, your new team member. A second is the “Quality
of the database schema”, because you know that the data of the two sys-
tems sooner or later will have to be integrated. A third is the “Handling of
currencies”, because Switzerland will join the Euro-region and within six
months all financial data must be converted to this new currency.

From reading the C-code, you learn that this part is quite cryptic (short
identifiers with mysterious abbreviations, long multi-exit loops, · · ·). Nev-
ertheless, the modules handling the internet protocols have unit tests,
which makes you feel more confident about the possibility to incorporate
them into your system.

The Java code presents a problem of scale: you can’t read 50.000 lines
of code in a single hour. Therefore, you pick some files at random and you
immediately discover that most class names have a two-character prefix,
which is either UI or DB. You suspect a naming convention marking a 2-
tiered architecture (database layer and user-interface layer) and you make
a note to investigate this further. Also, you recognize various class- and
attribute names as being meaningful for the health care domain (such as
Class DBPatient with attributes name, address, health insurance, · · ·). You
even perceive a class DBCurrency, so you suppose that switching to Euro
won’t cause a lot of problems, since the developers took the necessary pre-
cautions. Most of the classes and methods have comments following the

3.2. READ ALL THE CODE IN ONE HOUR 57

Javadoc conventions, so you suspect that at least some of the documen-
tation will be up-to date. Finally, you identified a large singleton object
which contains various strings that are displayed on the screen, which
leads you to conclude that it will even be possible to localize the system.

All this looks rather promising, however there are also a number of
discouraging observations. What makes you most pessimistic is the pres-
ence of numerous long methods with large parameter lists and complex
conditionals. Many of them seem to mix UI-logic (enabling/disabling of
buttons and menu-items) with business-logic (updating database records).
One thing (the calculation of prices) seems especially complicated and you
make a note to investigate this further.

Concerning the database, you again recognize various table names and
column names that are meaningful in the context of the health care do-
main. At first glance, the schema looks normalized, so here as well reverse
engineering seems promising. The database also employs some stored
procedures, which warrants further investigation.

After the reading session, you summarize your conclusions in the fol-
lowing note.

• Incorporating the internet protocols is feasible: unit-tests and re-
sponsible programmer available.

• Suspect a 2-tiered architecture based on naming convention. What
about the business logic — mixed in with UI? (further verification!)

• Readable code with meaningful identifiers; reverse engineering
looks promising.

• Currency object is present: Euro-conversion looks feasible (further
investigation!)

• Javadoc conventions used; verify documentation.

• Calculation of prices seems complicated; why?

• Database schema looks promising. Stored procedures requires fur-
ther investigation.

Rationale

Code reviews are widely acknowledged as being a very effective means
to find problems in programs written by peers [GG93] [Gla97]. Two im-
portant prerequisites have to be met in order to make such reviews cost-
effective: (a) a checklist must be prepared to help the reviewer focus on
the relevant questions and (b) a review session must be kept short because
reviewers cannot concentrate for a very long time (2 hours at maximum).

58 CHAPTER 3. FIRST CONTACT

I took a course in speed reading and read “War and Peace” in twenty
minutes. It’s about Russia.

— Woody Allen

There is an important difference between traditional code reviews and
the ones you perform during your first contact with a software system.
The former is typically meant to detect errors, while the latter is meant to
get a first impression. This difference implies that you need to care less
about details and thus that you can read more code. Typical guidelines
for code-reviews state that about 150 statements per hour can be reviewed
[BP94]. However, during your first contact you don’t need such a detailed
analysis and thus can increase the volume of code to be reviewed. We
didn’t perform any serious empirical investigation, but from our experi-
ence 10,000 lines of code per hour seems reasonable.

Known Uses

The original pattern was suggested by Kent Beck, who stated that it is one
of the techniques he always applies when starting a consultant job on an
existing system. Robson [RBCM91] reports code reading as “the crudest
method of gaining knowledge about a system” and acknowledges that it
is the method most commonly used to understand an existing program.
Some case studies reports also mention that reading the source code is one
of the ways to start a reengineering project [BH95] [JC00].

While writing this pattern, one of our team members applied it to re-
verse engineer the Refactoring Browser [RBJ97]. The person was not fa-
miliar with Smalltalk, yet was able to get a feel for the system structure
by a mere inspection of class interfaces. Also, a special hierarchy browser
did help to identify some of the main classes and the comments provided
some useful hints to what parts of the code were supposed to do. Apply-
ing the pattern took a bit more than an hour, which seemed enough for
a relatively small system and slow progress due to the unfamiliarity with
Smalltalk.

One particularly interesting occurrence of this pattern took place to-
wards the end of the FAMOOS project. During the course of one week, a
heterogeneous team of reverse engineers went for an on-site visit to par-
ticipate in a kind of reverse engineering contest. The assignment was to
invest four days and use the available reverse engineering tools to learn as
much as possible about a particular C++ system. The fifth day was then
used to report the findings to the original developers for verification. One
of the team members finished his assignment too early, and took the op-
portunity to Read all the Code in One Hour. It turned out that this one

3.2. READ ALL THE CODE IN ONE HOUR 59

person had a much better overview of the system: he could participate
in all discussions and could even explain some of the comments of the
developers.

What Next

After you Read all the Code in One Hour you should Do a Mock Instal-
lation to evaluate the suitability for reengineering. You may complement
your findings if you Skim the Documentation and carry out an Interview
During Demo to maximize your chances of getting a coherent view of the
system. Before actually making a decision on how to proceed with the
reengineering project, it is probably worthwhile to Chat with the Main-
tainers once more.

At the end of your first contact with the system, you should decide
on how to proceed with (or cancel) the project. Reading the code will in-
fluence this decision in various ways. First of all, you have assessed the
quality of the code (i.e., the presence of coding idioms and suspicious cod-
ing styles) and thus of the feasibility of reengineering project. Second, you
have identified some important entities, which are good starting points for
further exploration.

The list of the important entities (i.e., classes, packages, · · ·) resulting
from Read all the Code in One Hour can be used to start Analyze the Per-
sistent Data [p. 87] and Study the Exceptional Entities [p. 107]. This way
you can refine your understanding of the source code, especially the way
it represents the problem domain.

60 CHAPTER 3. FIRST CONTACT

3.3. SKIM THE DOCUMENTATION 61

3.3 Skim the Documentation

Intent Assess the relevance of the documentation by reading it in a limited
amount of time.

Problem

How to identify those parts of the documentation that might be of help?

This problem is difficult because:

• Documentation, if present, is usually intended for the development
team or the end users and as such not immediately relevant for
reengineering purposes. Worse, it is typically out of date with re-
spect to the current state of affairs, thus it may contain misleading
information.

• You do not yet know how the reengineering project will proceed,
hence you cannot know which parts of the documentation will be
relevant.

Yet, solving this problem is feasible because:

• Some form of documentation is available, so at least there is a descrip-
tion that was intended to help the humans concerned with the sys-
tem.

• Your reengineering project has a clear goal, so you can select those
parts of the documentation that may be valuable and those parts that
will be useless.

Solution

Prepare a list summarizing those aspects of the system that seem interest-
ing for your reengineering project. Then, match this list against the docu-
mentation and meanwhile make a crude assessment of how up to date the
documentation seems. Finally, summarize your findings in a short report,
including

• a general assessment of whether the system documentation will be
useful and why (not);

• a list of those parts of the documentation that seem useful and why
(e.g., requirement specifications, desired features, important con-
straints, design diagrams, user and operator manuals);

62 CHAPTER 3. FIRST CONTACT

• for each part, an impression of how up to date the description is.

Hints

Depending on the goal of the reengineering project and the kind of docu-
mentation you have at your disposal, you may steer the reading process to
match your main interest. For instance, if you want insight into the orig-
inal system requirements then you should look inside the system specifi-
cation, while knowledge about which features are actually implemented
should be collected from the end-user manual or tutorial notes. If you
have the luxury of choice, avoid spending too much time trying to under-
stand the design documentation (i.e., class diagrams, database schemas,
· · ·): rather record the presence and reliability of such documents as this
will be of great help in the later stages of reengineering.

Check whether the documentation is outdated with respect to the ac-
tual system. Always compare version dates with the date of delivery of
the system and make note of those parts that you suspect are unreliable.

The fact that you are limited in time should force you to think how you
can extract the most useful information. Below are some hints for things
to look out for.

• A table of contents gives you a quick overview of the structure and the
information presented.

• Version numbers and dates tell you how up to date that part of the
documentation is.

• Figures are a a good means to communicate information. A list of
figures, if present, may provide a quick access path to certain parts
of the documentation.

• Screen-dumps, sample print-outs, sample reports, command descriptions,
reveal a lot about the functionality provided by the system.

• Formal specifications (e.g., state-charts), if present, usually correspond
with crucial functionality.

• An index, if present contains the terms the author considers signifi-
cant.

Tradeoffs

Pros

• Provides a high abstraction level. Documentation is supposed to be
read by humans, thus at a certain level of abstraction. It may be

3.3. SKIM THE DOCUMENTATION 63

that this abstraction level is not high enough for your reengineering
project, but at least you can skip a few decoding steps.

• Focus on relevant parts. By preparing yourself with a list of what
seems interesting the reading session becomes goal-oriented, as such
increasing your chances of finding something worthwhile. More-
over, by making a quick assessment of how up to date the descrip-
tion is, you avoid to waste time on irrelevant parts.

Cons

• Misses crucial facts. A quick read in overview mode is likely to
miss crucial facts recorded in the documentation. However, you can
counter this effect to some degree by preparing yourself a list of what
you would like to find.

• You may find irrelevant information only. There is a small chance
that not a single part of the documentation seems relevant for your
reengineering project. Even in such a situation, the time spent on
reading is worthwhile because now you can justify not to worry
about the documentation.

Difficulties

• Targets a different audience. Documentation is costly to produce, hence
is written for the end users (e.g., user manuals) or the development
team (e.g., design). Documentation is also costly to maintain, hence
only the stable parts of the system are documented. Consequently,
the information you find may not be directly relevant, hence will
require careful interpretation.

• Documentation contains inconsistencies. Documentation is almost al-
ways out of date with respect to the actual situation. This is quite
dangerous during the early phases of a reengineering project, be-
cause you lack the knowledge to recognize such inconsistencies.
Consequently, avoid to make important decisions based on docu-
mentation only — first verify your findings by other means (in par-
ticular, Read all the Code in One Hour and Interview During Demo).

Example

After your informal chat with Dave and your code reading sessions you
have some general idea what would be the interesting aspects of the sys-

64 CHAPTER 3. FIRST CONTACT

tem. You decide to skim through the documentation to see whether it
contains relevant information.

You prepare yourself by compiling a list of aspects you would like to
read about. Besides obvious items like design diagrams, class interface
descriptions (Javadoc?) and database schema, the list includes Euro (does
the user manual say something about Euro conversions?) and the specifi-
cation of internet protocol.

Next, you go to Dave and ask him for all of the documentation con-
cerning the software system. Dave looks at you with a small grin on his
face: “You’re not really gonna read all of that, are you?” “Not exactly,”
you say to him, “but at least I want to know whether we can do some-
thing with it.” Dave looks in the box he has given you earlier and hands
you three folders full of paper — the design documentation — and one
booklet — the user manual.

You start with the user manual and — bingo: in the index you discover
an entry for Euro. Turning to the corresponding pages, you see that the
Euro is actually a chapter on its own consisting of about five pages, so you
mark those page numbers for further study. Next you skim through the
table of contents and there you notice a title “Switching to French / Ger-
man”. Reading these pages you see that localizing the software is a docu-
mented feature. Localizing wasn’t in your checklist but it is still important
so you gladly add a note about it. All of this looks rather promising, so
you verify the release date of the user manual and you see that it is quite
recent. A good start indeed!

Opening the first folder (entitled “Classes”) of the design documenta-
tion, you find more or less what you were expecting: a print-out of the
class interface as generated by Javadoc. Not that interesting to read on
paper, but you continue to leaf through the pages anyway. Your first im-
pression is that the actual descriptions coming with each of the classes and
methods are quite shallow. An impression which gets confirmed when
you examine three random pages in more detail. Next, you look for de-
scriptions for those classes interfacing with the C-code implementing the
internet protocol and there you even find empty descriptions. The litmus
test with the release date of the documentation reveals that this documen-
tation is quite old, so you make a note to check the online documentation.

The second folder contains a nice surprise: it is a generated description
of the database schema, describing for each table what the purpose of each
column is. Just like with the Javadoc class interface descriptions, the doc-
umentation itself is quite shallow but at least you have a way of finding
what each record in the database is supposed to represent. Here as well,
the litmus test with the document release date tells you to verify the online
version of the same documentation.

3.3. SKIM THE DOCUMENTATION 65

At first glance, the third folder seems to contain rubbish: various copies
of miscellaneous documents which seem only vaguely related with your
project. The first document is a price-list for medicines, the next ten are
extracts from the health care legislation. Still you continue to leaf through
the pages and you stumble upon some finite state diagrams which appear
to describe the internet protocol used to communicate with the health in-
surances. Apparently, the document is a copy from some pages out of a
technical specification but unfortunately no references to the original are
included. Even the release date for this document is missing, so you don’t
have the means to verify whether this specification is outdated.

You conclude the reading session with the following report:

• User manual is clear and up-to date: good source for black-box de-
scription of functionality.

• Euro is provided for (pp. 513-518); localization as well (pp. 723-725).

• Class interfaces descriptions are generated; shallow but verify on
line.

• Documentation for database schema is generated; shallow but verify
on line.

• Finite state-machines for the internet protocol? Status questionable:
verify with Dave.

• One folder containing miscellaneous documents (price-lists, instruc-
tion leaflets, · · ·)

Rationale

“It is not unusual for a software development organization to spend
as much as 20 or 30 percent of all software development effort on
documentation.”

— Roger Pressman, [Pre94]

Documentation, as opposed to source code, is intended to explain the
software system at an abstraction level well suited for humans. Therefore,
the documentation will certainly contain information “nuggets”; the only
problem is how to find the relevant ones. Finding relevant information is
made difficult because of two typical circumstances present in almost all
reengineering projects.

“All of the case-studies face the problem of non-existent, unsatisfac-
tory or inconsistent documentation”

66 CHAPTER 3. FIRST CONTACT

— ESEC/FSE 1997 Workshop on Object-Oriented
Re-engineering, [DG97]

First of all, the documentation is likely to be out of sync with respect to
the actual situation. For the five case-studies we investigated during the
FAMOOS project, “insufficient documentation” was the only problem all
maintainers complained about. Nevertheless, even outdated information
may be useful, because at least it tells you how the system was supposed
to behave in the past. This is a good starting point to infer how it is used
today.

“The documentation that exists for these systems usually describes
isolated parts but not the overall architecture. Moreover, the docu-
mentation is often scattered throughout the system and on different
media”

Kenny Wong, et al., [WTMS95]

Second, documentation is normally produced in a forward engineering
context, hence not intended for reengineering purposes. Generated design
documentation (e.g., database schemas, Javadoc) for instance, is typically
quite up-to date, yet too fine-grained to be useful during the initial phases
of a reengineering project. User manuals are black box descriptions of the
software system, and thus cannot serve as blueprints of what’s inside the
boxes. Here as well you should see the documentation as a good starting
point to infer what you’re really interested in.

Known Uses

A study by Fjeldstadt and Hamlen reported that “in making an enhance-
ment, maintenance programmers studied the original program about
three-and-a-half times as long as they studied the documentation, but just
as long as they spent implementing the enhancement.” [Cor89] quoting
[FH79]. This equation gives a good impression of the relative importance
studying the documentation should have.

“The case-study began with an effort to understand the existing de-
sign of CTAS in general and the CM in particular. — The documen-
tation for CTAS includes motivation and architecture overview, soft-
ware structures, user manuals and research papers on the underlying
algorithms. However, there appears to be no document that explains
in high-level terms what the system computes or what assumptions
it makes about its environment. Nor is there a design document that

3.3. SKIM THE DOCUMENTATION 67

explains the relationship between the CTAS components: how they
communicate, what services they offer, and so forth. We were forced
to infer this information from the code, a challenge common to many
commercial development efforts.”

— Daniel Jackson & John Chapin, [JC00]

The above quotation summarizes quite well that you need to study the
documentation, yet that it will not tell you all you need to know. The case-
study they are referring to concerns an air-traffic control system (CTAS)
where they reverse- and reengineered a key component Communications-
Manager (CM) of about 80 KLOC C++ code.

The following anecdote reveals how documentation might mislead
you. In one of the FAMOOS case-studies we were asked to evaluate
wether a distributed system connecting about a dozen subsystems could
be scaled up to connect approximately hundred subsystems. During this
evaluation, we studied the class responsible for maintaining all of the
TCP/IP connections where the comments described how all of the open
connections were maintained in a kind of look-up table. We did find a
look-up table in the code, but we were unable to map the description of
how it worked back to operations manipulating the table. After half a day
of puzzling, we gave up and decided to ask the maintainer. His matter-of-
fact response was, “Ah, but this class comment is obsolete. Now that you
mention it, I should have deleted it when I redesigned that class.”

What Next

You may want to Read all the Code in One Hour immediately after Skim
the Documentation to verify certain findings. It may also be worthwhile to
Chat with the Maintainers and Interview During Demo to confirm certain
suspicions.

At the end of your first contact with the system, you should decide on
how to proceed with (or cancel) the project. Once you have discovered rel-
evant documentation you know that you at least do not have to reproduce
this information. Even better, for those parts of the documentation that
are relevant but seem inaccurate you have some good starting points for
further exploration (for instance Analyze the Persistent Data [p. 87] and
Speculate about Design [p. 97]).

68 CHAPTER 3. FIRST CONTACT

3.4. INTERVIEW DURING DEMO 69

3.4 Interview During Demo

Intent Obtain an initial feeling for the appreciated functionality of a software
system by seeing a demo and interviewing the person giving the demo.

Problem

How can you get an idea of the typical usage scenarios and the main fea-
tures of a software system?

This problem is difficult because:

• Typical usage scenarios vary quite a lot depending on the type of
user.

• If you ask the users, they have a tendency to complain about what’s
wrong, while for reverse engineering purposes you’re mainly inter-
ested in what’s valuable.

• The system is large, so there is too much data to inspect for an accu-
rate assessment.

• You’re unfamiliar with the software system, so you do not know how
to filter out what’s relevant.

Yet, solving this problem is feasible because:

• You can exploit the presence of a working system and a few users
who can demonstrate how they use the software system.

Solution

Observe the system in operation by seeing a demo and interviewing the
person who is demonstrating. Note that the interviewing part is at least as
enlightening as the demo.

After this demo, take about the same amount of time to produce a re-
port about your findings, including:

• some typical usage scenarios;

• the main features offered by the system and whether they are appre-
ciated or not;

• the system components and their responsibilities;

• bizarre anecdotes that reveal the folklore around using the system.

70 CHAPTER 3. FIRST CONTACT

Hints

The user who is giving the demo is crucial to the outcome of this pattern
so take care when selecting the person. Therefore, do the demonstration
several times with different persons giving the demo. This way you will
see variations in what people find important and you will hear different
opinions about the value of the software system. Always be wary of en-
thusiastic supporters or fervent opponents: although they will certainly
provide relevant information, you must spend extra time to look for com-
plementary opinions in order to avoid prejudices.

Below are some hints concerning people you should be looking for,
what kind of information you may expect from them and what kind of
questions you should ask. Of course which people you should talk to de-
pends very much on the goal of your reengineering project and the kind of
organization surrounding it, hence this list is provided as a starting point
only.

• An end-user should tell you how the system looks like from the out-
side and explain some detailed usage scenarios based on the daily
working practices. Ask about the working habits before the software
system was introduced to assess the scope of the software system
within the business processes.

• A manager should inform you how the system fits within the rest of
the business domain. Ask about the business processes around the
system to check for unspoken motives concerning your reengineer-
ing project. This is important as reengineering is rarely a goal in
itself, it is just a means to achieve another goal.

• A person from the sales department ought to compare your software
system with competing systems. Ask for a demo of the functionality
most requested by the users (this is not necessarily the same as most
appreciated!) and ask how this has evolved in the past and how it
might evolve in the future. Use the opportunity to get insight into
the various types of end-users that exist and the way the software
system is likely to evolve.

• A person from the help desk should demonstrate you which features
cause most of the problems. During this part of the demo, ask how
they explain it to their users, because this may reveal mismatches
between the actual business practices and the way it is modelled by
the software system. Try to get them to divulge bizarre anecdotes to
get a feeling for the folklore around the software system.

• A system administrator should show you all that is happening behind
the scenes of the software system (i.e., startup and shutdown, back-

3.4. INTERVIEW DURING DEMO 71

up procedures, data archival, · · ·). Ask for past horror stories to as-
sess the reliability of the system.

• A maintainer/developer may demonstrate you some of the subsystems.
Ask how this subsystem communicates with the other subsystems
and why (and who!) it was designed that way. Use the opportunity
to get insight in the architecture of the system and the trade-offs that
influenced the design.

Variants

Demonstrate to yourself . A scaled-down variant of Interview During Demo
consists of the reverse engineer who demonstrates the system to him- or
herself via a trial-and-error process. Such a demonstration obviously lacks
the group dynamics that boosts the demonstration, but on the other hand
may serve as a preparation technique for a discussion with the designer-
s/maintainers.

Tradeoffs

Pros

• Focuses on valued features. The fact of giving a demo will gently coerce
the interviewee to demonstrate those features which are appreciated.
As a reverse engineer, that’s of course your main interest.

• Provides lots of qualitative data. Conducting an interview typically re-
sults in a wealth of relevant information, which is very hard to ex-
tract by other means.

• Increases your credibility. Performing an interview, shows to the inter-
viewee that there is a genuine interest in his or her opinions about
that system. The interview thus provides a unique opportunity to
enlarge the end-users confidence in the result of your reengineering
project.

Cons

• Provides anecdotal evidence only. The information you obtain is anec-
dotal at best, just like it is with Chat with the Maintainers. Intervie-
wees will almost certainly omit important facts, either because they
forgot or either because they deemed it uninteresting. This effect
will be countered to some degree by demonstration, yet prepare to
complement the information you obtained by other means (see for

72 CHAPTER 3. FIRST CONTACT

instance Skim the Documentation, Read all the Code in One Hour
and Do a Mock Installation).

• Time may be lacking. At least one person should be able to do the
demonstration. This seems a simple requirement but may be hard to
achieve in practice. Some systems (embedded systems for example)
just don’t have human users and — given the “time is scarce” princi-
ple — sometimes it will take too long to make an appointment with
someone who is willing to demonstrate the system.

Difficulties

• Requires interviewing experience. The way the questions are phrased
has considerable impact on the outcome of the interview. Unfortu-
nately, not all reverse engineers have the necessary skills to conduct
good interviews. When you’re unexperienced, rely on flow of the
demonstration to trigger the right kind of questions.

• Selecting interviewees may be difficult. You should avoid to interview
enthusiastic supporters or fervent opponents. Unfortunately, in the
beginning of a reengineering project you lack the knowledge to make
a good selection. Consequently, rely on other persons’ opinions to
make the selection, but prepare to adjust the results based on the
enthusiasm (or lack of it) of the interviewees.

• How to handle real-time software. For certain kinds of systems (espe-
cially real-time systems), it is impossible to answer questions while
operating the software system. In such a situation, jot down your
questions while seeing the demo, and do the actual interview after-
wards.

Example

Now that you checked the source code and the documentation you’re al-
most convinced that reengineering the XDoctor system will be feasible.
However, you still have some doubts about what precisely should be re-
verse engineered because you don’t really know what the users appreciate
in the system. Via the sales department, you get in touch with one of the
current users and you make an appointment for the next day. You’re also
worried about the state of the internet protocol (incl. the state-chart spec-
ification you discovered in the documentation) and the way it fits in with
the rest of the system, so you step to Dave and ask him whether he can
give you a demo of the internet protocols.

3.4. INTERVIEW DURING DEMO 73

Dave is quite pleased to show you his work and immediately starts to
type on his keyboard. “See, now I launched the server” he says, point-
ing at a little console window that appeared on the screen. “Wait a sec-
ond”, you reply, “what command did you type there?”. “LSVR; you know,
for Launch Server”. A bit surprised you ask Dave if there is some kind
of manual explaining how to start-up and shut-down this server. Dave
explains that there isn’t, but that it is quite easy to infer from the batch
file starting the whole system. He even tells you that there are some
command-line options associated with LSVR and that they are all docu-
mented in a READ.ME file and via the -h(elp) option. Next, Dave starts a
test program (yes, it is invoked via LSVRTST) and in the console window
you see that the server is actually receiving traffic, while the test program
is spitting out a long log of all the messages sent and received. Of course,
you ask him how he knows that the test succeeded and to your dismay
he states that this is done by manually inspecting the log. You decide to
switch topics and ask him why this subsystem is called a server, because
you would guess that it is actually running on the client machine. This
question triggers a heated discussion which eventually leads to an archi-
tecture diagram like the one depicted in figure 6, showing a remote server
(managed by the health insurances and accepting), a local server (the L in
LSVR probably stands for “local” and not “launch”) and some local clients.
From this discussion you kind of understand how the complete system is
working. The basic idea is that there are several client computers on vari-
ous desks connected to a local server via a LAN-network. The local server
maintains the database and the internet connections to the health insur-
ances. With the diagram on a little sheet of paper, you ask Dave where
this internet protocol originated from. This question again triggers a long
story which reminds you that the protocol is designed in Germany (hence
the reason why it’s documented with state-charts) and now adopted by
the national health insurance companies.

The next day, you put on your suit and drive off to have a meeting with
doctor Mary Johanssen. While introducing yourself, you get the impres-
sion that she is not so pleased. You explain the reason of your visit and
during the conversation you understand that the doctor is quite worried
about your company taking over the XDoctor software. You do your very
best to assure her that the main purpose of the demonstration and inter-
view is precisely to learn how your company may best serve the current
users and that they do not intend to stop supporting it. Reassured, she
starts the actual demonstration. Not surprisingly, the most appreciated
feature is the automatic transaction processing with the health insurances,
because “it means that I can save on a secretary to do the paperwork”.
However, Doctor Johanssen also shows you some other features you were
not aware of: built-in e-mail, export to spreadsheet (“I just e-mail this file

74 CHAPTER 3. FIRST CONTACT

LAN-networkInternet
Remote Server

Client Machines

Database

Figure 3.2: The architecture diagram as you inferred it from the discussion
with the maintainer.

to my bookkeeper”), payments in multiple currencies (“Real good to deal
with Euros”). During the course of the demo she tells you that in the be-
ginning the system was a bit unstable (apparently she served as an beta-
tester) and that there are some weird mistakes (the list of patients is sorted
by first name instead of family name) but all in all she is very pleased with
the system.

Once you are back in your office you write a small report, which in-
cludes the sequence of commands for testing the local server plus the us-
age scenario’s for the automatic transaction processing and the payment
with multiple currencies. Your report also includes the architecture dia-
gram (figure 6) and the following observations.

• Testing of internet protocols is manually: investigate regression tests.

• Internet protocol spec comes from a consortium of German health
insurances.

• Sorting of patient list: by first name instead of last name.

Rationale

“The ability to respond flexibly to the interviewee’s responses is one
of the reasons why interviews are so widely used”

— Simon Bennett, et al.., [BMF99]
“Interviews are well suited to exploratory studies where one does not
know yet what one is looking for, since the interviewer can adjust the
interview to the situation”

3.4. INTERVIEW DURING DEMO 75

— Jakob Nielsen, [Nie99]

Interviewing people working with a software system is essential to get
a handle on the important functionality and the typical usage scenario’s.
However, asking predefined questions does not work, because in the ini-
tial phases of reengineering you do not know what to ask. Merely asking
what people like about a system will result in vague or meaningless an-
swers. On top of that, you risk getting a very negative picture because
users have a tendency to complain about a legacy system.

“The real challenge of analysis begins when the expert must com-
municate the concept to someone else — to an analyst. Since the
concept is often very rich and expansive, it is generally not possible
for experts adequately to communicate their entire understanding in
a single, holistic expression.”

— Adele Goldberg & Kenny Rubin, [GR95]

Compared to a forward engineering situation, a reverse engineer has
one major advantage: there is a working software system available and
you can exploit its presence. In such a situation it is safe to hand over
the initiative to the user by requesting a demo. First of all, a demo allows
users to tell the story in their own words, yet is comprehensible because
the demo imposes some kind of tangible structure. Second, because users
must start from a working system, they will adopt a more positive attitude
explaining what works. Finally, during the course of the demo, the inter-
viewer can ask lots of precise questions, getting lots of precise answers,
this way digging out the expert knowledge about the system’s usage.

Known Uses

The main idea of this pattern — let the user explain the system while us-
ing it — is commonly used for evaluating user-interfaces. “Thinking aloud
may be the single most valuable usability engineering method. Basically,
a thinking-aloud test involves having a test subject use the system while
continuously thinking out loud.” [Nie99] The same idea is also often ap-
plied during rapid prototyping for requirements elicitation [Som96].

One anecdote from the very beginning of the FAMOOS project — an
application of the Demonstrate to yourself variant of this pattern — shows
how ignorant questions arising from seeing a software system in action
may trigger dormant expertise within the maintenance team. For one of
the case studies — a typical example of a 3-tiered system with a database
layer, domain objects layer and user-interface layer — we were asked ‘to

76 CHAPTER 3. FIRST CONTACT

get the business objects out’. Two separate individuals were set to that
task, one took a source code browser and a CASE tool and extracted some
class diagrams that represented those business objects. The other installed
the system on his local PC and spent about an hour playing around with
the user interface (that is, he demonstrated the system to himself) to come
up with a list of ten questions about some strange observations he made.
Afterwards, a meeting was organized with the chief analyst-designer of
the system and the two individuals that tried to reverse engineer the sys-
tem. When the analyst-designer was confronted with the class-diagrams
he confirmed that these were indeed the business objects, but he couldn’t
tell us whether there was something missing, nor did he tell us anything
about the rationale behind his design. It was only when we asked him
the ten questions that he launched off into a very enthusiastic and very
detailed explanation of the problems he was facing during the design —
he even pointed to our class diagrams during his story! After having lis-
tened to the analyst-designer, the first reaction of the person that extracted
the class diagrams from the source code was ‘Gee, I never read that in the
source code’.

Related Patterns

A lot of good advice concerning how to interact with end users is embod-
ied in the “Customer Interaction Patterns” [Ris00]. The main message of
these patterns is that “It’s a Relationship, Not a Sale”, emphasizing that
your contacts with the end users should aim to develop a relationship of
trust.

What Next

For optimum results, you should carry out several attempts of Interview
During Demo with different kinds of people. Depending on your taste,
you may perform these attempts before, after or interwoven with Read all
the Code in One Hour and Skim the Documentation. Afterwards, consider
to Chat with the Maintainers to verify some of your findings.

At the end of your first contact with the system, you should decide on
how to proceed with (or cancel) the project. By seeing the demonstrations,
you get a feeling for how the people use the system and which features
are appreciated. As such you know the valuable parts of the software
system and these are probably the ones that must be reverse engineered.
The usage scenarios will also serve as an input for patterns like Speculate
about Design [p. 97] and Record Business Rules as Tests [p. 175].

3.5. DO A MOCK INSTALLATION 77

3.5 Do a Mock Installation

Intent Check whether you have the necessary artefacts available by installing
the system and recompiling the code.

Problem

How can you be sure that you will be able to (re)build the system?

This problem is difficult because:

• The system is new for you, so you do not know which files you need
to build the system.

• The system may depend on libraries, framework, patches and you’re
uncertain whether you have the right versions available.

• The system is large and complex and the exact configuration under
which the system is supposed to run is unclear.

• The maintainers may answer these questions, or you may find the
answers in the manual, but you still must verify whether this answer
is complete.

Yet, solving this problem is feasible because:

• You have access to the source code and the necessary build tools (i.e.,
the makefiles, compilers, linkers).

• You have the ability to re-install the system in an environment that is
similar to that of the running system (i.e., the installation CD and a
computer with the right operating system).

• Maybe the system includes some kind of self test (see Tests: Your Life
Insurance!), which you can use to verify whether the build or install
succeeded.

Solution

Try to install and build the system in a clean environment during a limited
amount of time (at most one day). Run the self test if the system includes
one.

78 CHAPTER 3. FIRST CONTACT

Hints

The main idea is to verify whether you are able to replicate the install and
build processes, not to understand them completely.

Log all small failures you encounter during the build and installation
process and the way you solved them, because this will tell you about the
configuration of the system and its dependencies on libraries, frameworks
and patches. For example you may learn that the system cannot be com-
piled on a certain location, needs an old legacy library only accessible from
a particular machine, or needs a particular patch of the libraries.

It is possible that at the end of the day you did not succeed to build or
install the system completely. This corresponds to a high probability/high
impact risk for your reengineering project and therefore, before you con-
tinue, you must plan to study the build and install procedures and adapt
them where necessary.

After this build and install experiment, prepare a report containing:

• version numbers of libraries, frameworks and patches used;

• dependencies between the infrastructure (database, network toolkits,
ports, · · ·);

• problems you encountered and how you tried to solve them;

• suggestions for improvement;

• (in case of incomplete installation or build) your assessment of the
situation, including possibilities for solutions and workarounds.

Tradeoffs

Pros

• Essential prerequisite. The ability to (re)build or (re)install the system
is essential for a reengineering project, therefore you must assess this
issue early on. If building or installing proves to be difficult or im-
possible, plan the necessary corrective actions.

• Demands precision. Replicating the build and installation process
forces you to be precise about the components required. Especially
for migration projects this information is crucial because all the com-
ponents must be available on the target platform as well.

• Increase your credibility. After the build or install you will have first-
hand experience with the steps that prove to be difficult. It should be

3.5. DO A MOCK INSTALLATION 79

easy to offer some concrete suggestions for improvement, which will
undoubtedly increase your credibility with the maintenance team.

Cons

• Tedious activity. You will feel very unproductive while you are busy
tracking down the causes behind your failures to install the system,
especially since most of the problems depend on trivial details that
do not interest you now. You can counter this effect to some extent
by limiting the amount of time you devote to Do a Mock Installation,
but then you will feel even more unproductive because you will not
have succeeded in building or installing the system.

• No certainty. Although this pattern demands precision, there is no
guarantee that you will actually succeed to build the system after
you have reengineered some of its components. Especially when a
reliable self-test is missing you cannot verify whether your build or
install was complete.

Difficulties

• Easy to get carried away. Building or installing a complex system may
easily fail due to external factors (missing components, unclear in-
stallation scripts). It is tempting to continue fixing these annoying
problems due to the “next time it will work” effect. Rather than get-
ting carried away with these details, it is important not to lose sight
of the main goal, which is not to build the system, but to gain insight
into the build process. Consequently you should limit the time you
spend, and focus on documenting the problems that arise so you can
address them later.

Example

You have carried out an Interview During Demo with some end users,
and consequently have a feeling for the important features that should be
preserved during your reengineering project. However, before accepting
the project you still must verify whether you will be able to change the
system. Hence, you decide to do a quick experiment to see whether you
carry out a clean build of the system.

From the box that Dave has left in your office, you take the second CD
containing all the source code. Browsing the directories you notice one
top-level makefile and you decide to give it a try. You copy all the files

80 CHAPTER 3. FIRST CONTACT

to the Linux partition of your system and type the command make all
at the prompt. Everything goes smoothly for a while and the system re-
ports numerous successful java compilations. Unfortunately, after a few
minutes the make fails due to a missing library java.sql. You realize that
you still have a JDK1.1 installed, while you remember that the documenta-
tion mentioned that it should have been JDK1.3. Reluctantly, you trash the
whole directory structure, uninstall JDK1.1, download and install a JDK1.3
(downloading takes forever so you fetch yourself a cup of real coffee), and
then start again. This time the make proceeds smoothly until the compil-
ing of the C-code starts. The first compilation immediately fails due to a
missing library file and you open the C-file to see what exactly is causing
this failure. Apparently something must be wrong with the search paths,
because assert.h is a standard library you know is available in your sys-
tem. By then it is almost lunch-time and since you planned to finish this
build experiment today, you decide to leave the whole C-compilation for
later. Dave is here anyway, and since he wrote this C-code he will surely
be able to show you how to compile it.

After lunch, you want to verify whether what you built is OK. A grep
of "void main(" reveals that XDoctor.java file contains the main entry so you
type java XDoctor to launch the system. And indeed, the start-up screen
you recognize from the demonstration appears and a little status window
appears telling that the “the system is connecting to the database”. Imme-
diately thereafter, the system fails with a “something unexpected happens”
message and you suspect this is due to the missing database. You decide
to investigate this issue later and turn your attention to the installation
procedure.

You put the installation-CD in the CD-drive of your Macintosh to see
whether you are able to install the system. Automatically, the typical in-
stallation window appears and you proceed through the installation pro-
cess smoothly. After the installation process completes, the installer asks
you to reboot your computer before launching the system. You make a
note to verify which system extensions are installed, reboot your computer
and then double-click the XDoctor icon which appeared on your desktop.
Unfortunately, a window appears which asks you to provide a license key.
Studying the CD-box you read that you must have received the license key
in a separate letter which of course you did not receive. “Too bad”, you
think “it would have been nice to run a demo-version of the system when
no license key is provided, just as we do with our proDoc”. Frustrated you
decide to give up and write the following report.

• make with a JDK1.3 appears to work; could not verify whether this
build was complete.

• C-compilation fails: request Dave to demonstrate the build

3.5. DO A MOCK INSTALLATION 81

• Investigate licensing in further detail: how is the system protected?

• Suggestion: if no license key is provided, run in demo-mode (cf.
proDoc).

• Suggestion: verify pre-conditions when calling XDoctor.main(); sys-
tem exits with “something unexpectedly happens” after a fresh
build.

Known Uses

In one of the FAMOOS case studies, we had to reengineer a distributed
system that was communicating over sockets with a central server by
means of a little command language. We received a tape containing a tar-
file which — according to the letter attached — “contains everything that
is required”. Rebuilding and reinstalling the system proved to be diffi-
cult, however, and we had to dive into the installation scripts and ask the
maintainers for clarification. In the end, we could not communicate with
the central server due to security and connection problems, but we were
able to test the system in simulation mode. Although the experiment did
not succeed completely, it gave us insights into the system’s architecture.
In particular, the way the simulation mode mimicked the central server
and the way this was encoded in the source code and the makefiles pro-
vided us with information that turned out to be crucial during the rest of
the project.

Towards the end of the first day of an auditing project we carried out,
we requested to see a clean install the following morning. We consid-
ered this to be an innocent request meant to prepare things for an Inter-
view During Demo, but during the installation we discovered that one
maintainer had to stay overnight to prepare the installation CD. From the
subsequent discussion we learned that the system wasn’t meant to be in-
stalled: the user base was fixed and the system was designed to download
weekly updates over the internet. This explained many peculiarities we
observed during a previous effort to Read all the Code in One Hour and
helped us a lot to expose the design issues during the remainder of the
auditing project.

When working with a configuration management system, it is a good
idea to first try to import the code into a clean configuration before recom-
piling it. In case of a Smalltalk system for instance, one general piece of
advice is to first try to load the Envy configuration maps that compose the
system and then load the code into a clean image [PK01].

82 CHAPTER 3. FIRST CONTACT

What Next

It can be a good idea to Chat with the Maintainers before you report your
conclusions. They may be able to confirm your findings and clear up some
misconceptions. Concrete suggestions for improvement are best discussed
with the maintainers, because it is the best way to convince them that you
really mean to help them.

When the build or installation fails completely, you may want to com-
bine Interview During Demo with Do a Mock Installation. In that case,
invite a maintainer to demonstrate the build or installation process and
ask questions about those steps you have found unclear.

Chapter 4

Initial Understanding

Your company develops and distributes a medical information system
named proDoc for use by doctors. Now the company has bought a com-
peting software XDoctor product that provides internet support to perform
transactions with various health insurance companies. The two products
should be merged into a single system.

A first evaluation of XDoctor has revealed that a few components
should somehow be recovered and integrated into yours. Of course, to
successfully recover a software component, you must understand its in-
ner structure as well as its connections with the rest of the system. For
instance, your company has promised that customers “won’t lose a sin-
gle byte of data”, hence you must recover the database contents and con-
sequently understand the database structure and how the upper layers
depend on it. Also, your company has promised to continue and even ex-
pand the transaction support with health insurance companies, hence you
must recover the network communication component used to communi-
cate with these remote services.

Forces

Situations similar to this one occur frequently in reengineering projects.
After the First Contact [p. 39] with the system and its users, it is clear what
kind of functionality is valuable and why it must be recovered. However,
you lack knowledge about the overall design of the software system, so
you cannot predict whether this functionality can be lifted out of the legacy
system and how much effort that will cost you. Such initial understanding
is crucial for the success of a reengineering project and this chapter will

83

84 CHAPTER 4. INITIAL UNDERSTANDING

explain how to obtain it.

The patterns in First Contact should have helped you to get some first
ideas about the software system. Now is the right time to refine those ideas
into an initial understanding and to document that understanding in order
to support further reverse engineering activities. The main priority at this
stage of reverse engineering is to set up a reliable foundation for the rest
of your project, thus you must make sure that your discoveries are correct
and properly documented.

How to properly document your discoveries depends largely on the
scope of your project and the size of the your team. A complicated reverse
engineering project involving more than ten developers, demands some
standard document templates and a configuration management system.
At the other extreme, a run-of-the-mill project involving less than three
persons may be able to manage just fine with some loosely structured files
shared on a central server. However, there are a few inherent forces that
apply to any situation.

• Data is deceptive. To understand an existing software system you
must collect and interpret data and summarize it in a coherent view.
There is usually more than one way to interpret data and when
choosing between alternatives you will make assumptions that are
not always backed up by concrete evidence. Consequently, double-
check your sources to make sure you build your understanding on a solid
foundation.

• Understanding entails iteration. Understanding occurs inside the hu-
man brain, thus corresponds to a kind of learning process. Reverse
engineering techniques must support the way our minds assimilate
new ideas, hence be very flexible and allow for a lot of iteration and
backtracking. Consequently, plan for iteration and feedback loops in order
to stimulate a learning process.

• Knowledge must be shared. Once you understand the system it is im-
portant to share this knowledge with your colleagues. Not only will
it help them to do their job, it will also result in comments and feed-
back that may improve your understanding. Therefore, put the map on
the wall: publish your discoveries in a highly visible place and make
explicit provisions for feedback. How to do this will depend on the
team organization and working habits. Team meetings in general
are a good way to publish information (see Speak to the Round Ta-
ble [p. 27]), but a large drawing on the wall near the coffee machine
may serve just as well.

• Teams need to communicate. Building and documenting your under-
standing of a system is not a goal; it is a means to achieve a goal. The

85

real goal of understanding the system is to communicate effectively
with the other persons involved in the project, thus the way you doc-
ument your understanding must support that goal. There is for in-
stance no point in drawing UML class diagrams if your colleagues
only know how to read ER-diagrams; there is no point in writing use
cases if your end users can’t understand their scope. Consequently,
use their language: choose the language for documenting your un-
derstanding so that your team members can read, understand and
comment on what you have documented.

Overview

When developing your initial understanding of a software system, incor-
rect information is your biggest concern. Therefore these patterns rely
mainly on source-code because this is the only trustworthy information
source.

In principle, there are two approaches for studying source-code: one
is top-down, the other is bottom-up. In practice, every reverse engineer-
ing approach must incorporate a little bit of both, still it is worthwhile to
make the distinction. With the top-down approach, you start from a high-
level representation and verify it against the source-code (as for instance
described in Speculate about Design). In the bottom-up approach, you
start from the source-code, filter out what’s relevant and cast the relevant
entities into a higher-level representation. This is the approach used in
Analyze the Persistent Data and Study the Exceptional Entities.

There is no preferred order in which to apply each of these patterns. It
may be natural to first Analyze the Persistent Data, then refine the result-
ing model via Speculate about Design and finally exploit this knowledge
to Study the Exceptional Entities. Therefore the patterns are presented in
that order. However, large parts of your system won’t have anything to
do with a database (some systems lack any form of persistent data) and
then Speculate about Design must be done without having studied the
database. And when you lack the inspiration to start with Speculate about
Design, then Study the Exceptional Entities will surely provide you with
an initial hypothesis.

The amount of time you should devote to each of these patterns de-
pends largely on the goal of your reengineering project. In principle, none
of these patterns will take long, but each of them should be applied several
times. You cannot predict how many cycles will be necessary, because the
assessment whether your team understands enough to proceed with the
rest of the project can only be done after the patterns have been applied.
Therefore, these patterns must be applied on a case-by-case basis.

86 CHAPTER 4. INITIAL UNDERSTANDING

Figure 4.1: Obtain an Initial Understanding of a software system and cast
it into a higher-level representation.

What Next

You should make sure to reflect your increased understanding in the
project plan. For instance, Analyze the Persistent Data and Speculate
about Design will document parts of the system, and this documentation
must be added to the Opportunities. On the other hand, Study the Excep-
tional Entities will reveal some suspicious components and these must be
added to the Risks.

Once you have obtained a solid foundation for your understanding,
you should fill in the details for those components that are important for
the rest of your project. Activities described in Detailed Model Capture
[p. 117] may help you to fill in those details.

4.1. ANALYZE THE PERSISTENT DATA 87

4.1 Analyze the Persistent Data

Intent Learn about objects that are so valuable they must be kept inside a
database system.

Problem

Which object structures represent the valuable data ?

This problem is difficult because:

• Valuable data must be kept safe on some external storage device (i.e.,
a file system, a database). However, such data stores often act as an
attic: they are rarely cleaned up and may contain lots of junk.

• When loaded in memory, the valuable data is represented by com-
plex object structures. Unfortunately there lies a big gap between
the data structures provided by external storage devices and the ob-
ject structures living in main memory. Inheritance relationships for
instance are seldom explicitly provided in a legacy database.

• “Valuable” is a relative property. It is possible that large parts of the
saved data are irrelevant for your reengineering project.

Yet, solving this problem is feasible because:

• The software system employs some form of a database to make its
data persistent. Thus there exists some form of database schema pro-
viding a static description of the data inside the database.

• The database comes with the necessary tools to inspect the actual
objects inside the database, so you can exploit the presence of legacy
data to fine-tune your findings.

• You have some expertise with mapping data-structures from your
implementation language onto a database schema, enough to recon-
struct a class diagram from the database schema.

• You have a rough understanding of the system’s functionality and
the goals of your project (for example obtained via First Contact),
so you can assess which parts of the database are valuable for your
project.

Solution

Analyze the database schema and filter out which structures represent
valuable data. Derive a class diagram representing those entities to docu-

88 CHAPTER 4. INITIAL UNDERSTANDING

ment that knowledge for the rest of the team.

Steps

The steps below assume that the system makes use of a relational database,
which is commonly the case for object-oriented applications. However,
in case you’re confronted with another kind of database system, many of
these steps may still be applicable. The steps themselves are guidelines
only: they must be applied iteratively, with liberal doses of intuition and
backtracking.

Preparation. To derive a class diagram from a relational database schema,
first prepare an initial model representing the tables as classes. You may
do this by means of a software tool, but a set of index cards may serve just
as well.

1. Enumerate all table names and for each one, create a class with the
same name.

2. For each table, collect all column names and add these as attributes
to the corresponding class.

3. For each table, determine candidate keys. Some of them may be
read directly from the database schema, but usually a more detailed
analysis is required. Certainly check all (unique) indexes as they of-
ten suggest candidate keys. Naming conventions (names including
ID or #) may also indicate candidate keys. In case of doubt, collect
data samples and verify whether the candidate key is indeed unique
within the database population.

4. Collect all foreign keys relationships between tables and create an
association between the corresponding classes. Foreign key relation-
ships may not be maintained explicitly in the database schema and
then you must infer these from column types and naming conven-
tions. Careful analysis is required here, as homonyms (= identical
column name and type, yet different semantics) and synonyms (=
different column name or type, yet identical semantics) may exist.
To cope with such difficulties, at least verify the indexes and view
declarations as these point to frequent traversal paths. If possible,
verify the join clauses in the SQL statements executed against the
database. Finally, confirm or refute certain foreign key relationships
by inspecting data samples.

Incorporate inheritance. After the above steps, you will have a set of classes
that represents the tables being stored in the relational database. How-

4.1. ANALYZE THE PERSISTENT DATA 89

Person

id: char(5)

name: char(40)

address: char(60)

Inheritance Hierarchy
Tables with foreign key relationships

Tables with common column definitions Large table with many optional columns

(a)

(b)
(c)

Patient

id: char(5)

insuranceID: char(7)

insurance: char(5)

Salesman

id: char(5)

company: char(40)

Patient

id: char(5)

name: char(40)

address: char(60)

insuranceID: char(7)

insurance: char(5)

Salesman

id: char(5)

name: char(40)

address: char(60)

company: char(40)

Person

id: char(5)

kind: integer

name: char(40)

address: char(60)

insuranceID: char(7) <<optional>>

insurance: char(5) <<optional>>

company: char(40) <<optional>>

Person

id: ObjectID

name: String

address: String

Patient

insuranceID: String

insurance: String

Salesman

company: String

Figure 4.2: Mapping a series of relational tables onto an inheritance hier-
archy. (a) one to one; (b) rolled down; (c) rolled up

90 CHAPTER 4. INITIAL UNDERSTANDING

ever, because relational databases cannot represent inheritance relation-
ships, you have to infer these from the foreign keys. (The terminology for
the three representations of inheritance relations in steps 5-7 stems from
[Fro94].)

5. One to one (Figure 4.2 (a)). Check tables where the primary key also
serves as a foreign key to another table, as such foreign keys may
represent inheritance relationships. Examine the SELECT statements
that are executed against these tables to see whether they usually
involve a join over this foreign key. If this is the case, analyze the
table names and the corresponding source code to verify whether
this foreign key indeed represents an inheritance relationship. If it
does, transform the association that corresponds with the foreign key
into an inheritance relationship.

6. Rolled down (Figure 4.2 (b)). Check tables with common sets of col-
umn definitions, as these probably indicate a situation where the
class hierarchy is spread over several tables, each table representing
one non-abstract class. Define a common superclass for each clus-
ter of duplicated column definitions and move the corresponding
attributes inside the new class. Check the source code for the name
applicable for the newly created classes.

7. Rolled up (Figure 4.2 (c)). Check tables with many columns and lots
of optional attributes as these may indicate a situation where a com-
plete class hierarchy is represented in a single table. If you have
found such a table, examine all the SELECT statements that are ex-
ecuted against this table. If these SELECT statements explicitly re-
quest for subsets of the columns, then you may break this one class
into several classes depending on the subsets requested. For the
names of these classes, check for an encoding of subtype informa-
tion like for instance a “kind” column holding an enumeration type
number.

Incorporate associations. Note that the class diagram extracted from the
database may be too small: it is possible that classes in the actual in-
heritance hierarchy have been omitted in the database because they did
not define any new attributes. Also, table- and column-names may sound
bizarre. Therefore, consider to verify the class diagram against the source
code (see Speculate about Design) as this may provide extra insight. Af-
terwards, refine the remaining associations.

8. Determinate association classes, i.e., classes that represent the fact
that two objects are associated. The most common example is a

4.1. ANALYZE THE PERSISTENT DATA 91

many-to-many association, which is represented by a table having
a candidate key consisting of two foreign keys. In general, all tables
where the candidate keys are concatenations of multiple foreign keys
are potential cases of an association class.

9. Merge complementary associations. Sometimes a class A will have
a foreign key association to class B and class B an inverse foreign
key to class A. In that case, merge the two associations into a single
association navigable in both directions.

10. Resolve foreign key targets. When inheritance hierarchies have been
rolled up or down in the database, foreign key targets may become
ambiguous after the table has been decomposed in its constituting
classes. Foreign key targets may be too high or too low in the hierar-
chy, in which case the corresponding association will have too little
or too many participating classes. Resolving such situation typically
requires analyzing data-samples and SQL statements to see which
classes actually participate in the association.

11. Identify qualified associations, i.e., associations that can be navigated
by providing a certain look-up key (the qualifier). Common exam-
ples are ordered one-to-many associations, where the ordering num-
ber serves as the qualifier. In general, all tables where the candidate
key combines a foreign key with extra columns are potential quali-
fied associations; the extra columns then represent the qualifier.

12. Note multiplicities for the associations. Since all associations are de-
rived from foreign key relationships, all associations are by construc-
tion optional 1-to-many associations. However, by inspecting non-
null declarations, indices and data samples one can often determine
the minimum and maximum multiplicities for each of the roles in
the association.

Verification. Note the recurring remark that the database schema alone is
too weak as a basis to derive a complete class diagram. Fortunately, a
legacy system has a populated database and programs manipulating that
database. Hence, data samples and embedded SQL statements can be used
to verify the reconstructed classes.

• Data samples. Database schemas only specify the constraints al-
lowed by the underlying database system and model. However,
the problem domain may involve other constraints not expressed in
the schema. By inspecting samples of the actual data stored in the
database you can infer other constraints.

92 CHAPTER 4. INITIAL UNDERSTANDING

• SQL statements. Tables in a relational database schema are linked
via foreign keys. However, it is sometimes the case that some tables
are always accessed together, even if there is no explicit foreign key.
Therefore, it is a good idea to check which queries are actually exe-
cuted against the database engine. One way to do this is to extract
all embedded SQL statements in the program. Another way is to an-
alyze all executed queries via the tracing facilities provided with the
database system.

Incorporate operations. It should be clear that the class diagram you ex-
tract from a database will only represent the data-structure, not the oper-
ations used to manipulate those structures. As such, the resulting class
diagram is necessarily incomplete. By comparing the code with the model
extracted from the database (see Speculate about Design and Look for the
Contracts [p. 137]) it is possible to incorporate the operations for the ex-
tracted classes.

Tradeoffs

Pros

• Improves team communication. By capturing the database schema you
will improve the communication within the reengineering team and
with other developers associated with the project (in particular the
maintenance team). Moreover, many if not all of the people asso-
ciated with the project will be reassured by the fact that the data
schema is present, because lots of development methodologies stress
the importance of the database design.

• Focus on valuable data. A database provides special features for
backup and security and is therefore the ideal place to store the valu-
able data. Once you understand the database schema it is possible to
extract the valuable data and preserve it during future reengineering
activities.

Cons

• Has limited scope. Although the database is crucial in many of today’s
software systems, it involves but a fraction of the complete system.
As such, you cannot rely on this pattern alone to gain a complete
view of the system.

• Junk data. A database will contain a lot more than the valuable data
and depending on how old the legacy system is a lot of junk data

4.1. ANALYZE THE PERSISTENT DATA 93

may be stored just because nobody did care to remove it. Therefore,
you must match the database schema you recovered against the needs of
your reengineering project.

• Requires database expertise. The pattern requires a good deal of knowl-
edge about the underlying database plus structures to map the
database schema into the implementation language. As such, the
pattern should preferably be applied by people having expertise
in mappings from the chosen database to the implementation lan-
guage.

• Lacks behavior. The class diagram you extract from a database is
very data-oriented and includes little or no behavior. A truly object-
oriented class diagram should encapsulate both data and behavior,
so in that sense the database schema shows only half of the picture.
However, once the database model exists, it is possible to add the
missing behavior later.

Difficulties

• Polluted database schema. The database schema itself is not always
the best source of information to reconstruct a class diagram for the
valuable objects. Many projects must optimize database access and
as such often sacrifice a clean database schema. Also, the database
schema itself evolves over time, and as such will slowly deteriorate.
Therefore, it is quite important to refine the class diagram via analysis of
data samples and embedded SQL statements.

Example

While taking over XDoctor, your company has promised to continue to
support the existing customer base. In particular, you have guaranteed
customers that they won’t lose a single byte of data, and now your boss
asks you to recover the database structure. From the experience with your
own product, you know that doctors care a lot about their patient files
and that it is unacceptable to lose such information. Therefore you decide
that you will start by analyzing the way patient files are stored inside the
database.

You start by browsing all table names looking for a table named Patient,
but unfortunately you don’t find one. However, there is a close match
in a table named Person, where column names like insuranceID suggest
that at least some patient information is stored. Nevertheless, many col-
umn names are optional, so you suspect a rolled up representation where

94 CHAPTER 4. INITIAL UNDERSTANDING

Patient

id: char(5)

…

Patient

Treatment

comment: Text

Treatment

patientID: char(5)

date: date

nr: integer

comment: text

<<key>>

date: Date

nr: Integer

had-treatment

1

1

Figure 4.3: Identify a qualified association via a key consisting of a foreign
key (patientID) and two extra columns (date, nr).

patient information is mixed with information from other kinds of per-
sons. Therefore, you check the source-code and look for all embedded
SQL statements querying the table Person (i.e.,grep "SELECT * Person").
Indeed, there are two classes where such a query is used, namely Patient
and Salesman and from the subsets of columns queried in each class, you
infer the inheritance hierarchy depicted in Figure 4.2.

Now that you recovered the Patient, you start looking for the table that
stores the treatments a patient received. And indeed there is a table Treat-
ment which has a foreign key to the table Person. However, since you
have decomposed Person into the classes Patient and Salesman, it is nec-
essary to resolve the target of the foreign key. You join the tables Per-
son and Treatment over patientID (SELECT DISTINCT name, kind FROM
Person, Treatment WHERE Person.id = Treatment.patientID) and see that
all selected persons indeed have a kind which corresponds to a Patient.
Therefore, you set the target of the foreign key leaving from Treatment to
Patient (see left side of Figure 4.2). Next, you verify the indices defined on
Treatment and notice that there is a unique index on the columns patientID
- date - nr, which makes you conclude that these columns serve as a can-
didate key. Since the candidate key on Treatment consists of a foreign key
combined with two extra columns, you suspect a qualified association. To
confirm this assumption you analyze a data sample (SELECT name, date,
nr FROM Person, Treatment WHERE Person.id = Treatment.patientID OR-
DER BY name, date, nr) and see that the date and the number uniquely
identify a treatment for a given patient. As a consequence, you transform
the foreign key into a qualified association had-treatment with a multiplic-
ity of one on each role.

4.1. ANALYZE THE PERSISTENT DATA 95

Rationale

The object model is important for database applications because
it concisely describes data structure and captures structural con-
straints.

— Michael Blaha, et al.. [BLM98]

Having a well-defined central database schema is a common practice
in larger software projects that deal with persistent data. Not only does it
specify common rules on how to access certain data structures, it is also a
great aid in dividing the work between team members. Therefore, it is a
good idea to extract an accurate model of the database before proceeding
with other reverse engineering activities.

Note that extracting a database model is essentially a bottom-up ap-
proach: you start from the rough information contained in the database
schema and you polish it up until you have a satisfactory class diagram.
A bottom up approach works quite well in such a situation, because a
database schema is already an abstraction from a more detailed represen-
tation.

All data should be hidden within its class.
— Arthur Riel, Heuristic 2.1 [Rie96]

Information hiding is an important design principle, and most au-
thors agree that for a class this implies that all data should be encapsu-
lated within the class and only accessed via the operations defined on that
class. Unfortunately, the class diagram you extract from a database will
expose all of its data, because that’s the nature of a database. Therefore,
this class diagram is just a first step towards a well-designed interface to
the database.

Known Uses

The reverse engineering and reengineering of database systems is a well-
explored area of research [Arn92] [MJS+00]. Several experiments indicate
that it is feasible to recover the database structure, even for these database
systems that are poorly designed. [PB94] for instance reports about an ex-
periment concerning the reverse engineering of a data dictionary of a lead-
ing RDBMS vendor, as well as a production database storing data about
mechanical parts. [HEH+96] describes a prototype database reverse engi-
neering toolkit, as well as five industrial cases where the toolkit has been

96 CHAPTER 4. INITIAL UNDERSTANDING

applied. To illustrate the unpredictable nature of database reverse engi-
neering, [JSZ97] reports on the use of a fuzzy reasoning engine as the core
of a tool that extracts class diagrams out of relational database schemas.

What Next

Analyze the Persistent Data results in a class diagram for the persistent
data in your software system. Such a class diagram is quite rough and is
mainly concerned with the structure of the data and not with its behavior.
However, it may serve as an ideal initial hypothesis to be further refined
by applying Speculate about Design and Look for the Contracts [p. 137].

If you need to migrate to another database, you should cast your un-
derstanding of the database model in a test suite as explained in Tests:
Your Life Insurance! [p. 149].

Note that there exist patterns, idioms and pattern languages that de-
scribe various ways to map object-oriented data structures on relational
database counterparts [BW96] [KC98b]. Consulting these may help you
when you are reverse engineering a database schema.

4.2. SPECULATE ABOUT DESIGN 97

4.2 Speculate about Design

Intent Progressively refine a design against source code by checking hypotheses
about the design against the source code.

Problem

How do you recover the way design concepts are represented in the
source-code?

This problem is difficult because:

• There are many design concepts and there are countless ways to rep-
resent them in the programming language used.

• Much of the source-code won’t have anything to do with the design
but rather with implementation issues (glue code, user-interface con-
trol, database connections,-).

Yet, solving this problem is feasible because:

• You have a rough understanding of the system’s functionality (for ex-
ample obtained via Skim the Documentation [p. 61] and Interview
During Demo [p. 69]), and you therefore have an initial idea which
design issues should be addressed.

• You have development expertise, so you can imagine how you would
design the problem yourself.

• You are somewhat familiar with the main structure of the source code
(for example obtained by Read all the Code in One Hour [p. 53]) so
that you can find your way around.

Solution

Use your development expertise to conceive a hypothetical class diagram
representing the design. Refine that model by verifying whether the
names in the class diagram occur in the source code and by adapting the
model accordingly. Repeat the process until your class diagram stabilizes.

Steps

1. With your understanding of the system, develop a class diagram
that serves as your initial hypothesis of what to expect in the source

98 CHAPTER 4. INITIAL UNDERSTANDING

code. For the names of the classes, operations and attributes make
a guess based on your experience and potential naming conventions
(see Skim the Documentation [p. 61]).

2. Enumerate the names in the class diagram (that is, names of classes,
attributes and operations) and try to find them in the source code,
using whatever tools you have available. Take care as names inside
the source-code do not always match with the concepts they repre-
sent.1 To counter this effect, you may rank the names according to
the likelihood that they appear in the source code.

3. Keep track of the names that appear in source code (confirm your
hypothesis) and the names which do not match with identifiers in
the source code (contradict your hypothesis). Remember that mis-
matches are positive, as these will trigger the learning process that
you must go through when understanding the system.

4. Adapt the class diagram based on the mismatches. Such adaptation
may involve

(a) renaming, when you discover that the names chosen in the source
code do not match with your hypothesis;

(b) remodelling, when you find out that the source-code representa-
tion of the design concept does not correspond with what you have
in your model. For instance, you may transform an operation into a
class, or an attribute into an operation.

(c) extending, when you detect important elements in the source-code
that do not appear in your class diagram;

(d) seeking alternatives, when you do not find the design concept in
the source- code. This may entail trying synonyms when there are
few mismatches but may also entail defining a completely different
class diagram when there are lots of mismatches.

5. Repeat steps 2-4 until you obtain a class diagram that is satisfactory.

Variants

Speculate about Business Objects. A crucial part of the system design is
the way concepts of the problem domain are represented as classes in the
source code. You can use a variant of this pattern to extract those so-called
“business objects”.

1In one particular reverse engineering experience, we were facing source code that was a
mixture of English and German. As you may expect, this complicates matters a lot.

4.2. SPECULATE ABOUT DESIGN 99

One way to build an initial hypothesis is to use the noun phrases in the
requirements as the initial class names and the verb phrases as the initial
method names (See [WBWW90] [BS97] [Boo94] for in-depth treatments of
finding classes and their responsabilities).You should probably augment
this information via the usage scenarios that you get out of Interview Dur-
ing Demo [p. 69] which may help you to find out which objects fulfil which
roles. (See [JCJO92] [SW98] for scenarios and use cases and [Ree96] [RG98]
for role modeling.)

Speculate about Patterns. Patterns are “recurring solutions to a common
design problem in a given context”. Once you know where a certain pat-
tern has been applied, it reveals a lot about the underlying system de-
sign. This variant verifies a hypothesis about occurrences of architectural
[BMR+96], analysis [Fow97] or design patterns [GHJV95].

Speculate about Architecture. “A software architecture is a description of
the subsystem and components of a software system and the relationships
between them” [BMR+96] (a.k.a. Components and Connectors [SG96]).
The software architecture is typically associated with the coarse level de-
sign of a system and as such it is crucial in understanding the overall
structure. Software architecture is specially relevant in the context of a
distributed system with multiple cooperating processes, an area where re-
verse engineering is quite difficult.

This variant builds and refines a hypothesis about which components
and connectors exist, or in the context of a distributed system, which pro-
cesses exist, how they are launched, how they get terminated and how
they interact. Consult [BMR+96] for a catalogue of architectural patterns
and [SG96] for a list of well-known architectural styles. See [Lea96] for
some typical patterns and idioms that may be applied in concurrent pro-
gramming and [SSRB00] for architectural patterns in distributed systems.

Tradeoffs

Pros

• Scales well. Speculating about what you’ll find in the source code is
a technique that scales up well. This is especially important because
for large object-oriented programs (over a 100 classes) a bottom-up
approach quickly becomes impractical.

• Investment pays off. The technique is quite cheap in terms of resources
and tools, definitely when considering the amount of understanding
one obtains.

100 CHAPTER 4. INITIAL UNDERSTANDING

Cons

• Requires expertise. A large repertoire of knowledge about idioms, pat-
terns, algorithms, techniques is necessary to recognize what you see
in the source code. As such, the pattern should preferably be applied
by experts.

• Consumes much time. Although the technique is quite cheap in terms
of resources and tools, it requires a substantial amount of time before
one derives a satisfactory representation.

Difficulties

• Maintain consistency. You should plan to keep the class diagram up
to date while your reverse engineering project progresses and your
understanding of the software system grows. Otherwise your efforts
will be wasted. Therefore, make sure that your class diagram relies
heavily on the naming conventions used in the source-code and that
the class diagram is under the control of the configuration manage-
ment system.

Example

While taking over XDoctor, your company has promised to continue to
support the existing customer base. And since Switzerland will be joining
the Euro-region within six months, the marketing department wants to
make sure that Euro conversions will be supported properly. A first eval-
uation has revealed that the Euro is supported to some degree (i.e., it was
described in the user manual and there exists a class named Currency).
Now, your boss asks you to investigate whether they can meet the legal
obligations, and if not, how long it will take to adapt the software.

From a previous code review, you learned that the design is reasonably
good, so you suspect that the designers have applied some variant of the
Quantity [p. 320] pattern. Therefore, you define an initial hypothesis in
the form of the class diagram depicted in Figure 4.4 (a). There is one class
Money holding two attributes; one for the amount of money (a floating
point number) and one for the currency being used (an instance of the
Currency class). You assume operations on the Money class to perform the
standard calculations like addition, substraction, multiplication, · · · plus
one operation for converting to another currency. Currency should have
subclasses for every currency supported and then operations to support
the conversion from one currency into another. Of course, some questions
are left unanswered and you note them down on your class diagram.

4.2. SPECULATE ABOUT DESIGN 101

(a) Initial hypothesis where the open questions are inserted as Notes

(b) Refined hypothesis after verification against the source code; the modifications
are shown as Notes

Figure 4.4: Refining the hypotheses concerning the Euro representation.
(a) subclasses for the different currencies; (b) flyweight approach for the
currencies

102 CHAPTER 4. INITIAL UNDERSTANDING

1. What is the precision for an amount of Money?

2. Which calculations are allowed on an instance of Money?

3. How do you convert an instance of Money into another currency?

4. How is this conversion done internally? How is the support from
the Currency class?

5. Which are the currencies supported?

To answer these questions you verify your hypothesis against the
source code and you adapt your class diagram accordingly. A quick glance
at the filenames reveals a class Currency but no class named Money; a
grep-search on all of the source code confirms that no class Money exists.
Browsing which packages import Currency, you quickly find out that the
actual name in the source code is Price and you rename the Money class
accordingly.

Looking inside the Price class reveals that the amount of money is rep-
resented as a fixed point number. There is a little comment-line stating:

Michael (Oct 1999) ---- Bug Report #324 ---- Replaced
Float by BigDecimal due to rounding errors in the
floating point representation. Trimmed down the
permitted calculation operations as well.

Checking the interface of the Price class you see that the calculation
operations are indeed quite minimal. Only addition and negation (appar-
ently substraction must be done via an addition with a negated operand)
and some extra operations to take percentages and multiply with other
numbers. However, you also spot a convert operation which confirms
your hypothesis concerning the conversion of prices.

Next you look for subclasses of Currency, but you don’t seem to find
any. Puzzled, you start thinking about alternative solutions and after a
while you consider the possibility of a Flyweight [p. 320]. After all, having
a separate subclass for each currency is a bit of an overhead because no ex-
tra behavior is involved. Moreover, with the flyweight approach you can
save a lot of memory by representing all occurrences of the Euro-currency
with a single Euro-object. To verify this alternative, you look for all occur-
rences of constructor methods for Currency — a grep Currency does the
trick — and you actually discover a class Currencies which encapsulates
a global table containing all currencies accepted. Looking at the initialize
method, you learn that the actual table contains entries for two currencies:
Euro and Belgian Francs.

4.2. SPECULATE ABOUT DESIGN 103

Finally, you study the actual conversion in a bit more detail by look-
ing at the Price.convert operation and the contents of the Currency class.
After some browsing, you discover that each Currency has a single conver-
sion factor. This makes you wonder: isn’t conversion supposed to work
in two ways and between all possible currencies? But then you check all
invocations of the conversionFactor method and you deduce that the con-
version is designed around the notion of a default currency (i.e., the Cur-
rencies.default() operation) and that the conversionFactor is the one that
converts the given currency to the default one. Checking the Price.convert
operation, you see that there is indeed a test for default currency in which
case the conversion corresponds to a simple multiplication. In the other
case, the conversion is done via a two step calculation involving an inter-
mediate conversion to the default currency.

You’re quite happy with your findings and you adapt your class dia-
gram to the one depicted in figure 10(b). That model is annotated with the
modifications you made to the original hypothesis, thus you store both the
original and refined model into the configuration management system so
that your colleagues can reconstruct your deduction process. You also file
the following report summarizing your findings.

Conversion to Euro. Facilities for Euro conversion are available, but extra
work is required. One central class (Currencies) maintains a list of sup-
ported currencies including one default currency (Currencies.default). To
convert to Euro, the initialization of this class must be changed so that
the default becomes Euro. All prices stored in the database must also be
converted, but this is outside the scope of my study.

Follow-up actions:

• Adapt initialization of class Currencies so that it reads the default
currency and conversion factors from the configuration file.

• Check the database to see how Prices should be converted.

Rationale

The naive approach to design extraction is bottom-up: first build a com-
plete class diagram from source code and afterwards condense it by re-
moving the noise. Unfortunately, the bottom-up approach does not work
for large scale systems, because one typically gets a lot of white noise to
start from (see for example Figure 4.5, showing an inheritance hierarchy
with associations for a medium-sized system). Moreover, such a bottom-
up approach does not improve your understanding very much, because
it forces you to focus on the irrelevant noise instead of the important con-
cepts.

104 CHAPTER 4. INITIAL UNDERSTANDING

Figure 4.5: White-noise obtained by a bottom-up design extraction ap-
proach. The figure shows a fragment of an inheritance hierarchy aug-
mented with all method invocations and attribute accesses for a medium
sized system. The visualization is performed by CodeCrawler [DDL99]
[Lan99].

“We get things wrong before we get things right.”
— Alistair Cockburn, [Coc93]

In order to gain a true understanding of the legacy problem, you must
go through a learning process. Speculate about Design is intended to stim-
ulate such a learning process and therefore evidence that contradicts your
hypothesis is as valuable as evidence that confirms it. Indeed, mismatches
force you to consider alternative solutions and assess their pros and cons,
and that is the moment when true understanding emerges.

Known Uses

In [MN97], there is a report of an experiment where a software engineer
at Microsoft applied this pattern (it is called “the Reflection Model” in
the paper) to reverse engineer the C-code of Microsoft Excel. One of the
nice sides of the story is that the software engineer was a newcomer to
that part of the system and that his colleagues could not spend too much
time to explain it to him. Yet, after a brief discussion he could come up
with an initial hypothesis and then use the source code to gradually re-
fine his understanding. Note that the paper also includes a description
of a lightweight tool to help specifying the model, the mapping from the

4.2. SPECULATE ABOUT DESIGN 105

model to the source code and the checking of the code against the model.

The articles [Big89] [BMW93] [BMW94], report several successful uses
of this pattern (there it is called the “concept assignment problem”). In
particular, the authors describe a tool-prototype named DESIRE, which
includes advanced browsing facilities, program slicing and a Prolog-based
query language. The tool has been used by a number of people in different
companies to analyze programs of up to 220 KLOC. Other well- known
applications are reported by the Rigi group, which among others have
applied this pattern on a system consisting of over 2 million lines of PL/AS
code [WTMS95].

It has been shown that such an approach can be used to map an
object-oriented design onto a procedural implementation purely based on
a static analysis of the source-code [GW99] [WG98]. Nevertheless, newer
approaches try to exploit richer and more diverse information sources.
DALI for instance also analyses information from makefiles and profilers
[BCK98] [KC98a] [KC99]. Gaudi on the other hand, verifies the hypothesis
against a mixture of the static call graphs with run-time traces [RD99].

What Next

After this pattern, you will have a class diagram representing a part of the
design. You may want to Study the Exceptional Entities to get an impres-
sion of the design quality. If you need a more refined model, consider the
patterns in Detailed Model Capture [p. 117]. When your reverse engineer-
ing efforts are part of a migration or reengineer project, you should cast
your understanding of design in a test suite as explained in Tests: Your
Life Insurance! [p. 149]

106 CHAPTER 4. INITIAL UNDERSTANDING

4.3. STUDY THE EXCEPTIONAL ENTITIES 107

4.3 Study the Exceptional Entities

Intent Identify potential design problems by collecting measurements and
studying the exceptional values.

Problem

How can you quickly identify potential design problems in large software
systems?

This problem is difficult because:

• There is no easy way to discern problematic from good designs. As-
sessing the quality of a design must be done in the terms of the prob-
lem it tries to solve, thus can never be inferred from the design alone.

• To confirm that a piece of code represents a design problem, you
must first unravel its inner structure. With problematic code this is
typically quite difficult.

• The system is large, thus a detailed assessment of the design quality
of every piece of code is not feasible.

Yet, solving this problem is feasible because:

• You have a metrics tool at your disposal, so you can quickly collect a
number of measurements about the entities in the source-code.

• You have a rough understanding of the system’s functionality (for ex-
ample obtained via First Contact), so you can assess the quality of
the design in the system context.

• You have the necessary tools to browse the source-code, so you can
verify manually whether certain entities are indeed a problem.

Solution

Measure the structural entities forming the software system (i.e., the inher-
itance hierarchy, the packages, the classes and the methods) and look for
exceptions in the quantitative data you collected. Verify manually whether
these anomalies represent design problems.

108 CHAPTER 4. INITIAL UNDERSTANDING

Hints

Identifying problematic designs in a software system via measurements
is a delicate activity which requires expertise in both data collection and
interpretation. Below are some hints you might consider to get the best
out of the raw numbers.

• Which tool to use? There are many tools — commercial as well as
public domain — which measure various attributes of source code
entities. Nevertheless, few development teams make regular use of
such tools and therefore it is likely that you will have to look for a
metrics tool before applying this pattern.

In principle, start by looking at the tools used by the development
team and see whether they can be used to collect data about the code.
For instance, a code verification tool such as lint can serve as basis
for your measurements. Start looking for a metrics tool only when
none of the development tools currently in use may collect data for
you. If that’s the case, simplicity should be your main tool adop-
tion criterion as you do not want to spend your precious time on
installing and learning. The second tool adoption criterion is how
easy the metrics tool integrates with the other development tools in
use.

• Which metrics to collect? In general, it is better to stick to the simple
metrics, as the more complex ones involve more computation, yet
will rarely perform better.

For instance, to identify large methods it is sufficient to count the
lines of code by counting all carriage returns or new-lines. Most
other method size metrics require some form of parsing and this ef-
fort is usually not worth the gain.

• Which metric variants to use? Usually, it does not make a lot of differ-
ence which metric variant is chosen, as long as the choice is clearly
stated and applied consistently. Here as well, it is preferable to
choose the most simple variant, unless you have a good reason to
do otherwise.

For instance, while counting the lines of code, you should decide
whether to include or exclude comment lines, or whether you count
the lines after the source code has been normalized via pretty print-
ing. However, when looking for potential design problems it usually
does not pay off to do the extra effort of excluding comment lines or
normalizing the source code.

• Which thresholds to apply? Due to the need for reliability, it is better not

4.3. STUDY THE EXCEPTIONAL ENTITIES 109

to apply thresholds.2 First of all, because selecting threshold values
must be done based on the coding standards applied in the develop-
ment team and these you do not necessarily have access to. Second,
thresholds will distort your perspective on the anomalies inside the
system as you will not know how many normal entities there are.

• How to interpret the results? An anomaly is not necessarily problem-
atic, so care must be taken when interpreting the measurement data.
To assess whether an entity is indeed problematic, it is a good idea to
simultaneously inspect different measurements for the same entity.
For instance, do not limit yourself to the study of large classes, but
combine the size of the class with the number of subclasses and the
number of superclasses, because this says something about where
the class is located in the class hierarchy.

However, formulas that combine different measurements in a single
number should be avoided as you loose the sense for the constituting
elements. Therefore it is better to present the results in a table, where
the first column shows the name of the entity, and the remaining
columns show the different measurement data. Sorting these tables
according to the different measurement columns will help you to
identify exceptional values.

• How to identify anomalies quickly? Although it is possible to identify
exceptional values in a tabular representations of measurement data,
such an approach is tedious and error-prone. Most metric tools in-
clude some visualization features (histograms, scatter plots, · · ·) to
help you scan large volumes of measurements and this is usually a
better way to quickly focus on potential design problems.

• Should I browse the code afterwards? Measurements alone cannot deter-
mine whether a entity is truly problematic: some human assessment
is always necessary. Metrics are a great aid in quickly identifying en-
tities that are potential problems but code browsing is necessary for
confirmation. Note that large entities are usually quite complicated,
thus understanding the corresponding source code may prove to be
difficult.

• What about normal entities? Experienced programmers tend to dis-
tribute important functionality over a number of well- designed
components. Conversely, exceptional entities are quite often irrele-
vant as truly important code would have been refactored. Therefore,
you should be aware that you are only applying a heuristic: its pos-
sible that you are studying code which does not represent a design
problem simply because it is deemed unimportant.

2Most metric tools allow you to focus on special entities by specifying some threshold in-
terval and then only displaying those entities where the measurements fall into that interval.

110 CHAPTER 4. INITIAL UNDERSTANDING

Tradeoffs

Pros

• Scales well. Metrics are readily applicable to large scale systems,
mainly because with metric tools about 20% of all the entities require
further investigation. When different metrics are combined properly
(preferably using some form of visualization) one can deduce quite
rapidly which parts of the system represent potential design prob-
lems.

• Overview mode is appealing. With proper tool support you can pro-
duce visual representations of the metrics data that provide imme-
diate insight into the good as well as the problematic parts of the
design.

Cons

• Results are inaccurate. Some of the entities having exceptional mea-
surements will turn out not to be problematic. Metrics are only a
heuristic and false positives are likely to occur. Moreover, the metric
may reveal problems that are not worth solving because the solu-
tions will not contribute to your reengineering goal. Unfortunately,
this you will only know after you analyzed the source code.

• Missing priorities. Identifying a potential problem is easy, the real
difficult part is assessing the severity of the problem. Especially dur-
ing a reengineering project, you identify far more problems than you
have time to solve. Prioritizing the list requires a good understand-
ing of both the system and the reengineering project.

Difficulties

• Data is tedious to interpret. To measure the quality of a piece of code,
you must collect several measurements. Interpreting and compar-
ing such multi-valued tuples is quite tedious especially when deal-
ing with large software systems. Therefore, use visualizations which
allow you to analyze different measurements simultaneously.

• Requires expertise. The interpretation of measurement data is difficult
and requires a lot of expertise. Fortunately, part of this expertise
is documented in the form of design heuristics (see among others
[Rie96] [LK94]) and the rest can be acquired on the job.

4.3. STUDY THE EXCEPTIONAL ENTITIES 111

Figure 4.6: Class size overview with node size showing the lines of code
and gray value showing the number of instance variables.

Example

The analysis of the database and the design of XDoctor was quite reassur-
ing. Although there were some things to improve, the overall quality was
quite good. Yet, you want to confirm this feeling and therefore plan to
collect a number of quality metrics and visualize them. (Of course the vi-
sualization can be done with ordinary spreadsheets, but in this case you
decide to use the CodeCrawler tool [DDL99] [Lan99].)

Class Size Overview. As a starter, you get an impression of the raw physical
size of all the classes constituting XDoctor. You measure the class size in
terms of number of lines of code (LOC) and number of instance variables
(NIV) and use a checkers graph to show the relative proportion of the sizes.
In such a graph all nodes are shown as squares where the size of the square
is proportional to one size (here LOC) and the gray value is proportional
to another size (here NIV).

Figure 4.6 shows the checker graph for XDoctor. The picture reveals
that the class size is distributed quite evenly — which is reassuring — with
a few noteworthy exceptions. For instance, there is the class B (with 1495 it
is the largest in terms of lines of code) and class L (has most instance vari-
ables and second most lines of code). The classes in row Z are exceptional
in the sense that they are very small, some of them even empty.

Class Inheritance. Next, you get a feeling for the way inheritance is used by
studying the various subtrees in the inheritance hierarchy. Therefore, you
measure the classes in terms of hierarchy nesting level (HNL) and number
of descendant classes (NDC). You include size measurements as well to
assess the magnitude of the classes within the inheritance tree. Therefore,
you collect the number of methods (NOM), number of instance variables
(NIV) and number of lines of code (LOC) as well. You use an inheritance

112 CHAPTER 4. INITIAL UNDERSTANDING

Figure 4.7: Inheritance tree focussing on class size. The node width shows
the number of instance variables, the node height shows the number of
methods and the gray value shows the number of code lines.

tree to visualize the various subtrees and the proportion of class sizes in-
side each of them. All nodes in such a tree have a rectangular shape where
the height, width and gray value of each node show three measurements.

Figure 4.7 shows such an inheritance tree for XDoctor, where the height,
width and gray value of each node represent NOM, NIV and LOC. To
the left, you observe several normal inheritance trees, namely small ones
where the size of the classes is quite similar. One exceptional value is the
same B you noticed earlier, however you now see that it also has a large su-
perclass A (defining 70 methods), making it even more suspicious. The L
you’ve seen before appears here as a solitary class. The hierarchies rooted
in K, F and G seem quite interesting: they go deep (4 levels of inheritance)
and have one large root class plus many smaller subclasses. H and I, plus
M and N are both cases of large sibling classes, which may imply that too
little is inherited from the common superclass. This must be verified via
code browsing however.

Method Inheritance. To analyze particular inheritance trees in further detail,
you investigate how methods in a subclass relate to methods in their su-
perclass. Therefore, you produce a table showing for each class the num-
ber of methods overriding a method defined in a superclass (NMO), the
number of methods added to the superclass (NMA) and the number of
methods extending a method defined in a superclass (NME). Here as well
you use an inheritance tree to identify exceptional values in the measure-
ments.

Figure 4.8 shows the A, G and F subtrees identified earlier, but now
the height, width and gray value of each node represent NMO, NMA and
NME. The root classes are displayed as narrow white rectangles, which is

4.3. STUDY THE EXCEPTIONAL ENTITIES 113

Figure 4.8: Inheritance tree focussing on method inheritance. The node
width shows the number of methods added, the node height shows the
number of methods overridden and the gray value shows the number of
methods extended.

normal as root classes cannot override nor extend. As far as the subclasses
concerns, you observe two phenomena. On the one hand, the subclasses
of A add a lot, yet override very little, which suggests that code reuse is the
main purpose of this inheritance tree. On the other hand, the subclasses
of F and G override more methods than they add, which suggests a lot
of hook methods and an inheritance tree aimed at specializing behavior.
Here as well, these assumptions must be verified by code browsing.

Method Size Overview. An example of how to identify potential problems
in the method bodies concerns the ratio of lines of code (LOC) and the
number of messages sent (MSG). In most method bodies, these two mea-
surements will correlate but methods where this correlation does not hold
typically represent special code.

To study this correlation relationship one might divide the two mea-
surements. 3 However, then you lose the sense for the constituting mea-
surements which makes interpretation difficult. Therefore, you visualize
the relationship by means of a correlation graph, where each method is
shown as a small square and where the x, y position shows the measure-
ments that are supposed to correlate. In such a graph, the nodes where the
measurements correlate cluster around a diagonal, while the exceptions
are from the diagonal.

Figure 4.9 shows a correlation graph where the horizontal axis (left to
right) represents the number of messages sent and the vertical axis (top
to bottom) the number of lines of code. You observe a big cluster in the
top left corner where most nodes are superimposed on each other. This is

3Metrics theory prohibits arbitrary manipulations of numbers; one should Þrst verify
whether the scale of the measurement permits the calculation [FP96]. However, both are
counting measurements having a ratio scale and then division is permitted.

114 CHAPTER 4. INITIAL UNDERSTANDING

Figure 4.9: Correlation graph, with x-position showing the number of mes-
sages sent and y-position showing the lines of code.

reassuring because it implies that most methods have fewer than 15 lines
of code and 10 messages sent. The exceptions appear at the edges of the
picture. For instance, node A is a large method with 99 messages packed
on 45 lines of code. Node D (and its neighbors) are also methods where
many messages are packed on a single line of code. Via code browsing
you see that many of them are initialization methods. At the other side of
the diagonal there is node B, which represents a method with 16 lines of
code yet no messages sent. Code browsing reveals that it’s a case where
the whole method body has been commented out.

Rationale

You cannot control what you cannot measure.
— Tom De Marco, [Mar82]

In several places in the literature it is mentioned that measuring source
code helps in problem identification (see among others, [LK94] [FP96]
[MLM96] [Nes88]). Most metric tools applied during these experiments
visualize information by means of histograms and Kiviat diagrams. How-
ever, few research have studied the impact of thresholds while identify-
ing exceptional entities; our own experience is that thresholds don’t really

4.3. STUDY THE EXCEPTIONAL ENTITIES 115

matter [DD99].

Unfortunately, the current research is inconclusive with regards to the
accuracy of the results. Up until now, no experiments exist that count how
many problems remain undiscovered, nor is there any work on assessing
the severity of the problems discovered. As such it is impossible to assess
the reliability of metrics for reverse engineering.

Known Uses

During the FAMOOS project one event provided anecdotal evidence for
how well a simple approach may outperform more specialized and com-
plex approaches. Once we visited a business unit for a few days to demon-
strate our CodeCrawler tool. At first the developers were quite sceptical
because they felt like they would see “yet another metrics tool”. The first
surprise came when we showed them results already during the first day.
They told us that other tools would typically require several days config-
uration time before they could parse their C++ code because it made such
heavy use of special C++ features and macros. Moreover, and this was the
second surprise, this simplicity did not diminish the quality of our results.
The programmers confirmed most of the design anomalies we discovered,
yet were intrigued by some observations we made. During the subsequent
discussions they at least considered design alternatives.

What Next

Applying this pattern will result in an overall impression of design quality
and the identification of a few potential design problems. With this knowl-
edge you should at least reconsider whether the goal of your reengineering
project is still attainable. If it is, you will probably want to solve some of
these design problems, for instance using patterns in Redistribute Respon-
sibilities [p. 239] and Transform Conditionals to Polymorphism [p. 269].
Solving some of these problems may require a more detailed understand-
ing of that design, which may be obtained by patterns in Detailed Model
Capture [p. 117].

116 CHAPTER 4. INITIAL UNDERSTANDING

Chapter 5

Detailed Model Capture

The patterns in First Contact should have helped you to get acquainted
with the software system, while those in Initial Understanding should
have helped you to understand which are the most important entities in
the system. Your main priority now is to build up a detailed model of
those parts of the system that will be important for your reengineering
effort.

Most of the patterns concerned with Detailed Model Capture entail
considerably more technical knowledge, use of tools and investment of
effort than the patterns we have applied up to now. This is only natu-
ral, since only after you have built up your Initial Understanding can you
determine whether more intensive investment of effort will pay off.

Forces

Although you already have an impression of the system, there are several
forces at play that may make it difficult to extract a more detailed model:

• Details matter. As argued by Brooks [Bro87], software engineering is
different from other engineering disciplines because of the inherent
lack of abstraction barriers. Other engineering disciplines rely on the
laws of nature to hide irrelevant details, but software engineering
must build on less solid foundations. Consequently, it is essential to
pay attention to the details. The only question is how to filter out those
details that do not matter, because you cannot possible investigate
everything.

• Design remains implicit. As you read the code, many design deci-

117

118 CHAPTER 5. DETAILED MODEL CAPTURE

sions will become apparent to you, but it will not be clear why and
how these decisions were made. In particular, it will be hard to tell
which design decisions were easy to make, and which of them cre-
ated a lot of grief. Nevertheless, such knowledge is crucial during
a reengineering project because you want to avoid making the same
mistakes over and over again. Consequently, once you discover the un-
derlying design rationale, make sure that it is properly recorded. This way,
your successors will be able to build on your discoveries rather than
be forced to reinvent the wheel.

• Design does evolve. Change is an essential ingredient of a success-
ful system, certainly in object-oriented development processes with
their emphasis on iterative development. As a consequence, design
documents will always be out-of date with respect to the actual situ-
ation. However, this also implies that change itself is the key to un-
derstand how and why the design of a system has evolved the way
it is. Consequently, assume that important design issues will be reflected
in the source code and in the way this code has changed over time.

• Static structure versus Dynamic behavior. Object-oriented source code
tells you which classes are defined, and how they are arranged in a
class hierarchy. It is much harder to see which objects are instanti-
ated at run-time, and how they collaborate to support the system. On
a fine-grained level however, the latter is much more relevant than
the former, especially due to the use of polymorphism. Consequently,
to extract the detailed design one must inevitably study the dynamic behav-
ior.

Overview

The patterns of Detailed Model Capture propose a series of activities
that help you to expose design artifacts that are hidden in the code. Al-
though some of these patterns, in particular Tie Code and Questions, are
lightweight, most of them entail considerable effort, so you should evalu-
ate carefully how much you expect to get out of applying them.

Figure 5.1 suggests some possible relationships between the patterns.
Tie Code and Questions is perhaps the most fundamental of these patterns,
and the easiest to apply. As you work through the source code, keep track
of comments, questions, hypotheses and possible actions to perform by
directly annotating the source code at the point where the comment applies.
This pattern works well with the other patterns in this cluster, and can be
productively applied throughout a reengineering project.

Refactor to Understand helps you to expose the design of cryptic code.

119

Figure 5.1: The patterns of Detailed Model Capture help you to expose the
design of the software system and keep track of your understanding.

120 CHAPTER 5. DETAILED MODEL CAPTURE

It is important to understand that the intent of this pattern is not to im-
prove the code base itself, but only to improve your understanding. It
might well be that you decide to keep the results of your refactorings, but
this should not be your goal at this point. Your refactorings should instead
be treated as experiments to tests various hypotheses concerning the code.

Since the source code gives you only a very static view of the class
hierarchy, it is useful to Step Through the Execution to learn what objects
are instantiated and run time and how they interact.

Although it is very easy to extract the interfaces of the classes in the
system, this will not tell you very much about how these interfaces can or
should be used. What you really need is to do is Look for the Contracts
supported by each class. The contracts tell you which client-supplier rela-
tionships exist, and how the public interface of a class supports that rela-
tionship. Idiomatic coding practices and design patterns typically express
such contracts in direct way, so you should train yourself to recognize
them.

Finally, though you may be able to extract various design artifacts from
the source code, you will not necessarily be able to get an insight into how
the system evolved that way. In particular, you may wonder whether cer-
tain design decisions were really justified, or whether they were arbitrary,
and you may wonder how stable parts of the design are. By comparing
different versions of the code base and focussing on places where func-
tionality was removed or refactored, you will be able to Learn from the
Past.

What Next

Now that you have mastered the details of a part of your system, it is a
good time to prepare for the actual reengineering by applying the patterns
in Tests: Your Life Insurance!. In particular, as you Refactor to Under-
stand, it is a good idea to Write Tests to Understand [p. 179], as this will
give you confidence in your experiments. Also, patterns like Step Through
the Execution, Look for the Contracts and Learn from the Past help you
to see which components implement what functionality: this knowledge
must be used to Test the Interface, Not the Implementation [p. 171] and to
Record Business Rules as Tests [p. 175].

5.1. TIE CODE AND QUESTIONS 121

5.1 Tie Code and Questions

Intent Keep the questions and answers concerning your reengineering activi-
ties synchronized with the code by storing them directly in the source files.

Problem

How do you keep track of your understanding about a piece of code and
the questions that you have, keep these remarks synchronized with the code
during its future evolution, and share them with the other members of your
team?

This problem is difficult because:

• Writing up what you know and don’t know about the system you
are analyzing is tedious and time-consuming.

• Your understanding is a moving target, so it is hard to keep a written
document up-to-date.

• If you don’t write down your questions and insights as soon as they
occur to you, you will not be able to keep track of them.

• You want to share your knowledge with the team to maximize its
value.

• Logging questions and answers in log files, bulletin boards or email
distribution lists may be convenient for disseminating knowledge
within the team, and may provide a convenient searchable history
of the team’s understanding, but when you are looking at a piece of
code, it will be hard to tell what questions and answers pertain to it.

Yet, solving this problem is feasible because:

• You can annotate the code, and therefore record your understanding
physically close to the code element it refers to.

Solution

While you are working on the code annotate it directly and immediately
with the questions you are facing.

In principle there are two ways to annotate the code.

122 CHAPTER 5. DETAILED MODEL CAPTURE

• Comment-based Annotations. This approach uses the commenting
conventions of the programming language and as such is better-
suited for a text-oriented environment. A few conventions are
needed to distinguish the normal comments from the annotations.

/* #to: John #by: SD #on: 3/12/99 *****
Screws up when we have nested IFs. */

Basic tools part of your program environment can then be used to
search and modify annotations. With a little bit of extra effort one
can easily build tools to query, extract and cross-index all comment-
based annotations.

• Method-based annotations. This approach exploits the possibility to
query which method invokes a given method, a feature provided by
many of today’s programming environments. The idea is to declare
a global method accepting a few strings as an argument and having
an empty method body. Each time you want to annotate a particular
piece of code, you invoke that method passing your annotations as a
parameter.

this.annotateCode("#to: John #by: SD #on: 3/12/99",
"Screws up when we have nested IFs.");

You can then use the querying and browsing facilities of your pro-
gramming environment to identify the locations where this special
method is invoked, thus where the annotations occur. Most pro-
gramming environments can be extended by means of little scripts,
in which case it is possible to develop tools to generate reports about
all annotations.

Note that the less you change the code, the less likely it is that you
will introduce errors. This makes the comment-based version safer
than the method-based version.

Hints

• Record your annotations as close as possible to the code to which they
refer.

• Annotations may be questions, hypotheses, “to do” lists, or simply ob-
servations about the code that you wish to record for future reference.

• Use conventions to identify your annotations. In a team context, in-
clude, for example, the initials of the developer that made the com-
ments and the date the comment was entered. This way you can
easily query them.

5.1. TIE CODE AND QUESTIONS 123

• Follow the corporate practices. If comments are written in a language
other than English, continue if you can. However, if you have the
choice never write your annotations in a language different from that
in which the source code is written (English in most cases). Other-
wise, you create a different context and force the reader to switch
between them.

• When you discover the answer to any one of your questions, immedi-
ately update the annotation for the benefit of future readers, or simply
delete the question if it is no longer relevant.

Tradeoffs

Pros

• Natural Synchronization. You keep the code and the annotations in
close physical proximity, and you thereby improve your chances of
keeping them in sync. While modifying the code, you will more
naturally modify the annotations, or remove them if they become
obsolete.

• Improves Team Communication. Tie Code and Questions avoids that
team members must open an extra communication channel (e-mail,
bulletin boards, · · ·). They must read the code they work with any-
how so you can multiplex the code as a communication channel.

• Minimize Context Description. When you annotate the code you are
immediately in context. This way you will minimize the need to de-
scribe the context of your questions and keep your effort low while
documenting your questions and annotations.

Cons

• Passive in Nature. Questions that you enter are not necessarily di-
rected to anyone and even if they are, it is not certain that the ad-
dressee will read them or answer them in time. Additional tools are
needed to collect the annotations and maybe even notify the appro-
priate persons.

• Process Incompatibility. Many companies are organized around a hi-
erarchical reporting structure. Tie Code and Questions may be re-
jected by these organizations because it circumvents the normal com-
munication channels. Also, some corporate practices impose strong
constraints on what programmers are allowed to do with the code,

124 CHAPTER 5. DETAILED MODEL CAPTURE

which may limit the potential if this pattern. For instance, if annota-
tions cannot be removed when they become obsolete, they will create
too much noise to be useful.

Difficulties

• Finding the Right Granularity. As with any kind of comments, you
should take care to introduce just the right amount of detail. Terse or
cryptic annotations quickly lose their value, and verbose annotations
will distract the reader from the code itself.

• Motivating the Programmers to Write Comments. Programmers gener-
ally do not like to write comments or documentation. One way of
motivating them is to use the annotations during code reviews or
status meetings: this way the comments have an immediate benefit.

• Quality of the Answers. As with any other kinds of documentation, it
may happen that wrong answers are given. One way to deal with
this situation is to review the annotations regularly within the team.

• Eliminating the Annotations. On certain occasions you may wish the
remove the annotations. For instance, if you must deliver a “clean”
version of the source-code to your customer, or if your compiler isn’t
smart enough to remove an invocation of an empty method body. In
that case, make sure that you have the proper tools to filter out the
annotations.

Rationale

This pattern has its roots in literate programming [RS89][Knu92]. A liter-
ate program reverses the usual relationship between program text and
comments: executable code is embedded within documentation, not the
other way around. Literate programming puts the emphasis on keeping
the code and its documentation physically close. The physical proximity
reduces the effort spent in keeping the code and its documentation in sync.

Known Uses

Comment-based annotations. Various programming environments provide
implicit support for managing annotations within the code. Emacs, for
example, has a built-in tool, called e-tags, which allows you to easily gen-
erate a cross-reference database of a a set of files [CRR96]. The Eiffel en-
vironment, on the other hand, allows you to assign different levels of vis-
ibility to your comments (and your code). If you assign private scope to

5.1. TIE CODE AND QUESTIONS 125

your annotations you can easily separate the annotations yet make sure
that these will not be seen externally.

The company MediaGeniX — a Belgian company operating in the
multi-media sector — used a systematic code tagging mechanism to record
information about changes. The programming environment was altered
in such a way that every change to the code was automatically anno-
tated with a tag that describes the motivation for the code change (bug
fix, change request, new release), the name of developer, and the time of
the modification. Only the last tag is kept in the code, but via the con-
figuration management system it is possible to inspect previous tags and
changes. The tag also includes a free field where the developers may write
what they want and is often used for questions and answers.

Method-based annotations. The Squeak development team [IKM+97] used
this technique not so much to keep track of questions but as a means to
facilitate communication in an open-source development project. In this
team comments were introduced by invoking the method flag: defined in
the class Object. Developers can query all senders of the flag: message to
locate annotations. Furthermore, the method is defined to accept a symbol
as its argument. This makes it possible to search more specifically, for
example, for all the annotations flagged with the symbol #noteForJohn.

Object>>flag: aSymbol
"Send this message, with a relevant symbol as argument, to flag
a message for subsequent retrieval. For example, you might put
the following line in a number of messages:

self flag: #returnHereUrgently
Then, to retrieve all such messages, browse all senders of
#returnHereUrgently."

Figure 5.2 shows on the top pane all the senders of the flag: message in
the Squeak2.7 environment. The bottom pane then shows the code of the
method removeEmptyRows that contains a call to the method flag: high-
lighted. The flag: message is sent with argument #noteToJohn. The actual
content of the annotation follows as a comment.

Related Patterns

Tie Code and Questions works well in tandem with Refactor to Under-
stand. Questions in the code may often be resolved by refactoring it. Con-
versely, as you Refactor to Understand, new questions will be raised and
can be entered as annotations.

126 CHAPTER 5. DETAILED MODEL CAPTURE

Figure 5.2: Finding all senders of a message in Squeak.

5.2. REFACTOR TO UNDERSTAND 127

5.2 Refactor to Understand

Intent Iteratively refactor a part of a software system in order to validate and
reflect your understanding of how it works.

Problem

How can you understand a cryptic piece code?

This problem is difficult because:

• Cryptic code is difficult to read, hence to understand.

• You may have some idea how the code works, but it is hard to verify
because the code does not reflect your ideas.

Yet, solving this problem is feasible because:

• The piece of code is relatively small and has clearly defined bound-
aries.

• Your development tools allow for rapid edit-compile cycles, so you
can make some small changes and check whether you’re still able
to compile the source-code or that your tests still run.

• You have a source-code browser that allows you to query dependencies
between source-code entities (i.e., which methods invoke a given op-
eration, which methods access a given attribute, ...), so that you can
infer its purpose.

Solution

Iteratively rename and refactor the code to introduce meaningful names
and to make sure the structure of the code reflects what the system is actu-
ally doing. Run regression tests after each change if they are available, else
compile often to check whether your changes make sense. Decide what to
do with the code after you have refactored it.

Hints

Your primary goal here is to understand the system, not to improve the code.
The changes you make to the code should therefore be treated as “exper-
iments” to test your understanding of the code. As a consequence, you

128 CHAPTER 5. DETAILED MODEL CAPTURE

should make a copy of the code before you start. After you have refactored
the code, it is possible that you release any of the changes you make, but
you do not want to make that decision up front. Perhaps your refactoring
experiments will actually improve the code, but it is just as likely that you
will make a mess of things since you do not yet understand the code. It
does not really matter at this stage. After a first experience you will be in
a better position to do a proper job of refactoring.

It is hard to do a good job of refactoring without having tests in place
to verify that your changes have not broken anything. If adequate tests
do not exist, you should not seriously consider keeping the results of your
refactoring experiments. However, consider applying Write Tests to Un-
derstand [p. 179] in tandem with Refactor to Understand.

You should select refactoring operations that will make design deci-
sions more explicit in the code. The typical refactorings applied during
this iterative restructuring are Rename Attribute [p. 318], Rename Method
[p. 318], and Extract Method [p. 317].

The following guidelines will help you to find out where and how to
apply these refactorings to improve the readability of the code. Many
of these guidelines are considered to be just good, standard practice in
Smalltalk programming [Bec97]. They apply, however, equally well to
other programming languages. They can be applied in any order; each
of them participates in the understanding of the others.

• Rename attributes to convey roles. Focus on attributes with cryptic
names. To find out about their roles, look at all the attribute accesses
(including invocations of accessors methods). Afterwards, rename
the attribute and its accessors according to its role, update all refer-
ences and re-compile the system.

• Rename methods to convey intent. To retrieve the intent of a method
that does not have an intention revealing name, investigate all invo-
cations and attribute uses, and deduce the method’s responsibility.
Afterwards, rename the method according to its intent, update all
invocations and re-compile the system.

• Rename classes to convey purpose. To capture the purpose of class hav-
ing an unclear name, investigate clients of the class by examining
who is invoking its operations or who is creating instances of it. Af-
terwards, rename the class according to its purpose, update all refer-
ences and re-compile the system.

• Remove duplicated code. If you identify duplicated code, try to refactor
it into a single location. As such, you will identify slight differences
that you probably would not have noticed before refactoring and
that are likely to reveal some subtle design issues.

5.2. REFACTOR TO UNDERSTAND 129

• Replace condition branches by methods. If you encounter conditions
with large branches, extract the leaves as new (private) methods.
To name these methods, study the condition until you understand
it well enough to choose an intention revealing name.

• Refactor method bodies to a consistent level of abstraction. Long method
bodies with comments separating blocks of code violate the rule of
the thumb that all statements in a single method body should have
the same level of abstraction. Refactor such code by introducing a
new (private) method for each separated block of code; name the
method after the intent recorded in the comment.

Tradeoffs

Pros

• Expose design. Not only will the refactoring process improve your
understanding of the code, but this understanding will also become
explicit in the structure of the code. This will make it easier to further
document that understanding by means of Tie Code and Questions
or Write Tests to Understand [p. 179].

• Incremental validation. Normally, understanding does not arise as
part of a single revelation, but as the result of an iterative process in
which earlier understanding is the base for the next iteration. Refac-
tor to Understand encourages such an approach, because of its em-
phasis on small steps and frequent verification (either by running
tests or either by compiling often).

Cons

• Risk of introducing errors. The less you change the code, the smaller
your chances of introducing errors. Small refactorings should be
behavior-preserving, but it may be non-trivial to verify that even
simple refactorings do not break the code. If you do not have ad-
equate regression tests in place, it can be risky to introduce changes,
or costly to develop the needed tests. For these reasons it is impor-
tant to attempt to Refactor to Understand only on a working copy of
the software.

Difficulties

• Tool Support. Manually refactoring code can be tedious and risky
[FBB+99]. Various tools, like the Refactoring Browser [RBJ97],

130 CHAPTER 5. DETAILED MODEL CAPTURE

greatly simplify the task of refactoring, and especially help to apply
non-trivial refactorings such as Extract Method.

• Acceptance of Changes. Refactoring someone else’s code may prove
a lot harder than refactoring your own. A lot of companies have a
strong culture of code ownership, so improving someone else’s code
is often considered an insult. That is one of the reasons why you
should not necessarily release the refactored version to the rest of
the team.

• When to stop. It is often difficult to stop changing code when you
identify problems. Remember that your primary goal here is to just
understand the system. When you have achieved that goal, it is time
to stop.

Known Uses

Don Roberts and John Brant coined the term Refactor to Understand at
ESUG ’97 and Smalltalk Solutions ’97 during a demonstration of the Refac-
toring Browser. They showed how they gradually understood an algorithm
by renaming and refactoring its code. During the subsequent iterations of
the pattern, the code slowly started to make sense and the design gradu-
ally became explicit in the code.

We applied this pattern ourselves during a FAMOOS case study. We
had to understand a single method of about 3000 lines of C++, which was a
deeply nested conditional. We first replaced the leaf condition branches by
methods, gradually working our way up the nesting structure. After sev-
eral iterations, we discovered that this method was actually implementing
a complete parser for a small command language.

Harry Sneed reports several reengineering projects where a large Cobol
program was refactored by removing all goto statements. However, he
was later forced to reintroduce the go-to statements because the develop-
ers rejected his changes [Sne99].

Related Patterns

“Arranging the Furniture” [Tay00] is a pattern to help newcomers feel
at home when they start in a new project. The pattern solution is: “An
adopter should be encouraged to ‘move in’ by cosmetically arranging the
code.”

5.2. REFACTOR TO UNDERSTAND 131

What Next

Refactor to Understand works well in tandem with Tie Code and Ques-
tions. Refactorings are more expensive to implement than simply annotat-
ing the code, so first annotate, and then refactor. Also, consider to Write
Tests to Understand [p. 179] as you refactor. These two activities reinforce
each other since tests document your understanding of how a software ar-
tifact works, and refactoring helps you to expose its design. Furthermore,
tests will help you to verify that your refactorings didn’t break anything.

When you have finished a round of Refactor to Understand, you must
decide what to do with your changes. If you discard the experimental
code, you should consider applying Tie Code and Questions to annotate
the code base with the knowledge you have acquired.

132 CHAPTER 5. DETAILED MODEL CAPTURE

5.3. STEP THROUGH THE EXECUTION 133

5.3 Step Through the Execution

Intent Understand how objects in the system collaborate by stepping through
examples in a debugger.

Problem

How do you discover which objects are instantiated at run-time and how
they collaborate?

This problem is difficult because:

• The source code exposes the class hierarchy, not the objects instanti-
ated at run time and how they interact.

• Collaborations are typically spread out through the code. Although
it is easy to see which classes and methods are defined in a system, it
can be hard to tell by reading the source code alone which sequence
of events will lead to an object being created or a method being in-
voked.

• In the presence of polymorphism, it can be especially difficult to tell
which objects are clients of which service providers. Just because an
object uses a certain interface that another object provides, does not
mean that the former is actually a client of the latter.

• Reading the code will not tell you what concrete scenarios can take
place. The actual flow of execution will depend on the internal state
of all participating objects and this cannot be inferred directly from
the source code.

• The source code will not tell you which objects are long-lived and
which are ephemeral (i.e., local to the execution of a single method).

Yet, solving this problem is feasible because:

• You are aware of some typical usage scenarios.

• You can run the code inside a debugger.

• Your attention is focussed on part of the system.

Solution

Run each of the scenarios and use your debugger to step through the code.
Observe which objects collaborate and how they are instantiated. After-

134 CHAPTER 5. DETAILED MODEL CAPTURE

wards, generalize these observations and record your knowledge for fu-
ture reference, possibly by means of Tie Code and Questions and Record
Business Rules as Tests [p. 175].

Hints

It is too time-consuming to step through every single statement of a run-
ning system. The assumption here is that you are focussed on some spe-
cific aspect of the system that is difficult to understand.

• Set breakpoints to interrupt execution when the system enters the
code you are interested in.

• Change the internal state of the objects to see how alternative execu-
tion paths are triggered.

• Restart a method currently on the execution stack to quickly verify a
similar scenario.

Tradeoffs

Pros

• Realistic View. By stepping through the running program, you get
a precise picture of how the scenario unfolds. Moreover, you can
inspect the internal state of the objects involved, see how new ob-
jects are created and observe which objects collaborate under which
circumstances.

• Handles complexity. On a small scale it is possible to infer object col-
laborations from analyzing the source code. Slicing tools for instance
may tell you which statements of the source code are affected by a
given variable. For large and complex systems however, the num-
ber of possibilities and interactions is just too large. Therefore, the
only reasonable way to learn how objects collaborate is to study the
execution traces.

Cons

• Scenario-based. Your must restrict yourself to a limited set of sce-
narios, hence the observed object-collaborations are necessarily in-
complete. Of course you must do your best to choose representa-
tive scenarios. Unfortunately, this choice brings you back to square
one, because the only way to be sure that you have a representative

5.3. STEP THROUGH THE EXECUTION 135

set of scenarios is to verify whether they cover all possible object-
collaborations.

• Restricted Applicability. For systems where time plays a crucial role,
stepping through the execution will give you an unrealistic view of
the system’s behavior. Worse, for concurrent or distributed systems
the mere fact of stepping through concurrent code may perturb the
execution of the system itself. As such, you get the same effects as in
Heisenberg’s uncertainty experiments, where determining exact po-
sitions of quantum particles imply that other attributes about these
particles become uncertain.

Difficulties

• Dependency on Tools. You need to have good debugger to Step
Through the Execution. Not only must it allow to set and remove
breakpoints dynamically, it also should provide the means to exam-
ine the state of the objects involved. And to easily verify alternative
paths, the debugger should allow you to change the internal state of
an object, or even restart a method currently on the execution stack.

What Next

You will need concrete scenarios in order to Step Through the Execution
(possibly inferred from Interview During Demo [p. 69]). Consider encod-
ing these scenarios as test cases. You can then iteratively Write Tests to
Understand [p. 179] as you Step Through the Execution since the insights
you gain into the states of collaborating objects can then be formulated as
concrete tests.

As you Step Through the Execution, it is a good idea to keep an eye on
the way collaborating objects use each other’s interface. Afterwards, you
can exploit the knowledge you have gained to Look for the Contracts.

136 CHAPTER 5. DETAILED MODEL CAPTURE

5.4. LOOK FOR THE CONTRACTS 137

5.4 Look for the Contracts

Intent Infer the proper use of a class interface by studying the way clients cur-
rently use it.

Problem

How do you determine which contracts a class supports? That is, how do
you know what a class expects from its client classes in order to function
as intended.

This problem is difficult because:

• Client/supplier relationships and contracts are only implicit in the
code. Although interfaces are easy to extract from the code, they do
not necessarily tell you how to use them properly. If not explicitly
documented, it can be hard to guess (a) the proper sequence in which
methods should be invoked, (b) the valid parameters that should be
supplied, (c) which methods should be invoked by which clients, (d)
which methods should be overridden by subclasses.

• Typing and scoping rules often force programmers to compromise
the provider’s interface. Moreover, encapsulation constructs (e.g.,
public/private declarations) are frequently misused to cope with im-
plementation issues. For instance, database and user-interface toolk-
its often require the presence of public accessor methods.

Yet, solving this problem is feasible because:

• You have a good understanding of the system’s structure (for exam-
ple obtained via Initial Understanding), so you can distinguish key
classes from less important ones.

• You trust that the class is being used properly by its clients and its
subclasses.

Solution

Look for common programming idioms that expose the way clients make
use of the class interface. Generalize your observations in the form of con-
tracts, i.e., explicit declarations of what a class expects from its clients.

138 CHAPTER 5. DETAILED MODEL CAPTURE

Hints

Your goal here is to understand how classes collaborate by exposing the
way in which the interface to a class is used by its different clients. Since
an exhaustive analysis of the code will probably exhaust you, you need
some way to expose the contracts without stepping through every single
line of code.

Although contracts are only implicit in the code, most frequently there
will be hints in the code that a particular relationship exists between var-
ious classes. These hints may manifest themselves as idioms particular to
the programming language in use, conventions in use by the development
team, or even common design patterns.

What precisely you should look for will depend on the context, but
here are a few examples that are generally useful:

Use Your Tools. To get an overview of the relationships between classes,
make the best use you can of the available tools. Although you could an-
alyze the code by hand to infer relationships between classes, the process
is tedious when applied to more than a couple of classes.

Many organizations use design extraction or round-trip engineering
tools to document their systems. You can easily generate a draft view of
the system you are analyzing without investing too much time. However,
be prepared to be flooded with “boxes and arrows” diagrams containing
irrelevant detail. Nevertheless, design extraction tools let you specify fil-
ters and ways to interpret code, so once your mappings are defined you
can reuse them over multiple extractions.

The design overview can help you to identify key classes in the hierar-
chy (i.e., abstract classes that many other classes inherit from), part-whole
relationships, and so on.

Look for Key Methods. Focus on the most important methods. With your
knowledge of the system you will recognize key methods based on their
signature.

• Method Names. Key methods are likely to bear intention revealing
names [Bec97].

• Parameter types. Methods taking parameters with types correspond-
ing to key classes in the system are likely to be important.

• Recurring parameter types. Parameters represent temporary associa-
tions between objects. When the same parameter types often recur
in method signatures, they are likely to represent important associa-
tions.

5.4. LOOK FOR THE CONTRACTS 139

Look For Constructor Calls. To understand how and when to instantiate
objects of a particular class, look for methods in other classes invoking the
constructors.

Pay particular attention to which parameters are passed to the con-
structor, and whether the parameters are shared or not. This will help you
determine which instance variables are parts of the constructed object, and
which are merely references to shared objects.

Invocations of constructor methods may reveal a part-whole relationship.
When a client stores the result of a constructor method in an attribute then
this client will probably serve as the whole. On the other hand, when a
client passes itself as an argument to a constructor method it is likely to
act as a part.

Invocations of a constructor method may also expose a Factory Method
[p. 319] or even an Abstract Factory [p. 319]. If they do, then you know that
you will be able extend the system by subclassing the class under study.

Look for Template/Hook Methods. To understand how to specialize a class,
look for (protected) methods that are overridden by subclasses, and iden-
tify the public methods that call them. The public, calling method is almost
certainly a Template Method [p. 322]. Check the class hierarchy to deter-
mine whether the overridden method is abstract, in which case subclasses
must implement it, or whether a default implementation is provided. In
the latter case, it is a hook method, and subclasses may choose to override it
or be happy with the default.

For each template method check all other methods it invokes as these
are likely to represent other hook methods.

Look for Super Calls. To understand what assumptions a class makes about
its subclasses, look for super calls. Super calls may be used by subclasses
to extend an inherited method in an ad hoc way. But very often super calls
express the fact that a particular method must not be overridden by subclasses
unless the overridden method is explicitly invoked by a super call.

This idiom is heavily used in Java by classes that define multiple con-
structors. Any subclass of java.lang.Exception, for example, is expected
to define both a default constructor and a constructor that takes a String
argument. Those constructors should do nothing in particular except in-
voke the super constructor so that the exception subclass will be correctly
initialized.

140 CHAPTER 5. DETAILED MODEL CAPTURE

Tradeoffs

Pros

• Reliable. You can trust the source code more than the documentation.

Cons

• Bad habits linger. Just because certain practices appear in the code
doesn’t mean that’s the right way to do things. The contracts that
clients and subclasses adhere to are not necessarily the ones that the
class actually supports.

• Noise. Browsing the source code is like mining — once in a while you
will find a gem but you will have to dig through a lot of dirt first. By
focussing your attention on idiomatic usages, you should be able to
reduce the noise factor to a large degree.

Known Uses

Many researchers have investigated ways to analyze how clients use a
class interface. For instance, Brown [Bro96], Florijn [FMvW97] and Wuyts
[Wuy98] have all shown that it is possible to find symptoms of design pat-
terns in code. Also, Schauer et al. [SRMK99] report about a technique to
semi-automatically detect hook methods based on analysis of overridden
methods. The latter technique scales quite well, due to their particular
way of visualizing class hierarchies and emphasizing classes where many
methods are overridden, hence are likely to define hook methods. Addi-
tionally, Steyaert et al. [SLMD96] have shown that it is possible to capture
how subclasses depend on their superclasses (they have named these de-
pendencies reuse contracts) and afterwards detect potential conflicts when
the superclasses gets changed.

What Next

One way to validate the contracts you have identified is to Step Through
the Execution. Conversely, as you Step Through the Execution you will
uncover collaborations between various objects. At that point you may
Look for the Contracts that govern those collaborations.

If the code is hard to read, you may wish to Refactor to Understand be-
fore you Look for the Contracts. To understand how the contracts evolved
to their current state, you might Learn from the Past.

5.5. LEARN FROM THE PAST 141

5.5 Learn from the Past

Intent Obtain insights into the design by comparing subsequent versions of the
system.

Problem

How can you discover why the system is designed the way it is? How can
you learn which parts of the system are stable and which parts aren’t?

This problem is difficult because:

• The lessons learned during a development process are rarely
recorded in documentation. Furthermore, the developers’ percep-
tions and memory of design decisions tend to warp over time. There-
fore, you can only rely on source code and must reconstruct the
learning process from there.

• The system is large and has been released in successive versions, and
therefore you have a large quantity of source code to analyze. Text
comparison tools (such as Unix diff) will not scale up for the sizes
you’re dealing with.

• Even if you have a tool to identify the changes between two subse-
quent releases, most of the changes will concern adding new func-
tionality. For the reconstruction of the learning process and how this
consolidated into the class design, you’re main interest lies in what
happened with the old functionality.

Yet, solving this problem is feasible because:

• You have a good understanding of the system’s structure (for exam-
ple obtained via Initial Understanding), so you’re able to focus on
appropriate subsystems.

• You have access to the subsequent releases of the system, so you can re-
construct the changes by comparing the source code of the versions.

• You have the means to examine what happened with individual
source code entities. For instance, you have a metrics tool at your dis-
posal, which allows you to quantify the size of entities in the source-
code and use these numbers as a basis for comparison. As an alter-
native, you have a configuration management system that can provide
you with information about particular changes to source-code enti-
ties.

142 CHAPTER 5. DETAILED MODEL CAPTURE

• You have enough expertise with refactorings in the implementation
language being used, so you are able to recognize refactorings from
their effects on source-code. Moreover, once you know which refac-
torings have been applied, you can use this expertise to make an
educated guess at the underlying design rationale.

• You have a source-code browser that allows you to query which meth-
ods invoke a given operation (even for polymorphic operations), so
you can find out dependencies between classes and investigate how
they are affected by the refactorings.

Solution

Use the metrics or configuration management tool to find entities where
functionality has been removed, because such entities are a sign of a con-
solidating design. Also, look for entities which change often as these may
point you to an unstable part of the design.

Hints

Your goal is to get a feeling for how and why the system has evolved to
its current state. In particular, you want to understand which parts of the
system have been heavily refactored, which parts have become stable, and
which parts are hot spots of activity.

Portions of the software system that have been heavily extended are
simply a sign of growth, not of evolution of the design. On the other hand,
portions where software has been removed are signs that the design of the
system has been altered. By understanding how it has been altered, you
can obtain insights into the stability of the design.

Unstable design. If you detect repeated growth and refactoring in the same
portion of the system, that should be a sign that the design is unstable. It
may indicate opportunities to redesign that portion of the system to bet-
ter accommodate the kinds of changes and extensions that habitually take
place.

Mature and stable design. A mature subsystem will exhibit some growth
and refactoring, followed by a period of stability. Early versions of the
subsystem will show growth followed by refactoring, followed by a period
in which only new classes and subclasses are added. As the hierarchy
stabilizes, classes near the top of the hierarchy will exhibit only moderate
growth, but little refactoring.

5.5. LEARN FROM THE PAST 143

Tradeoffs

Pros

• Concentrates on important design artifacts, because the changes point
you to those places where the design is expanding or consolidating
and this in turn provides insight into the underlying design ratio-
nale.

• Provides an unbiased view of the system, because you do not have to for-
mulate assumptions about what to expect in the software (in contrast
to top-down techniques like Speculate about Design [p. 97]).

Cons

• Requires considerable experience, in the sense that the reverse engineer
must be well aware of how the refactorings interact with the coding
idioms in the particular implementation language.

• Considerable tool support is required, especially (a) a metrics tool or a
configuration management system; (b) a code browsers that is able
to trace back polymorphic method invocations.

Difficulties

• Imprecise for many changes, because when too many changes have
been applied on the same piece of code, it becomes difficult to re-
construct the change process.

• Sensitive to renaming, if one identifies classes and methods via their
name1. Then rename operations will show up as removals and addi-
tions which makes interpreting the data more difficult.

Rationale

Many object-oriented systems came into being via a combination of iter-
ative and incremental development (see [Boo94] [GR95] [JGJ97] [Ree96]).
That is, the original development team recognized their lack of problem
domain expertise and therefore invested in a learning process where each
learning phase resulted in a new system release. It is worthwhile to re-
construct that learning process because it will help you to understand the
rationale embodied in the system design.

1Note that some configuration management systems keep track of renaming operations
which will of course alleviate the problem.

144 CHAPTER 5. DETAILED MODEL CAPTURE

One way to reconstruct the learning process is to recover its primitive
steps. In object-oriented parlance, these steps are called refactorings and
consequently this pattern tells you how to recover refactorings like they
have been applied in the past. The technique itself compares two subse-
quent releases of the source code identifying entities that decrease in size,
because that’s the typical symptom of functionality that has been moved
elsewhere.

Known Uses

We ran an experiment on three medium-sized systems implemented in
Smalltalk. As reported in [DDN00], these case studies suggest that some
simple heuristics can support the reverse engineering process by focusing
attention on parts of the system where functionality has been removed.
This way, we could for instance detect where a class had been split or
where methods have been moved to a sibling class. Of course these refac-
torings must be examined in further detail to guess the intent behind the
refactoring. This is never easy but in our experience has proven worth-
while. In one particular case for instance, we discovered several classes
where methods had been moved to sibling classes. Closer examination
revealed that the reengineer was moving these methods to break circular
dependencies and was in fact introducing a layer.

Other researchers also report on examining changes to support the re-
verse engineering process. For instance, Ball et al. annotate code views
with colors showing code age [BE96]. On the other hand, Jazayeri et al.
use a three-dimensional visual representation for examining a system’s
software release history [JGR99]. The same people have also investigated
which change requests affect which software modules to detect logical de-
pendencies between software modules [GHJ98].

What Next

Now that you discovered some stable parts in the design, you will proba-
bly want to reuse them. In that case take some precautions: first document
the interfaces of that part (see Look for the Contracts) and then write the
corresponding test cases (see Test the Interface, Not the Implementation
[p. 171]).

On the other hand, the unstable parts of the design should probably be
dismissed Nevertheless, if the unstable part seems crucial for your reengi-
neering project, then you must seek which change requests caused the in-
stability. In that case, Chat with the Maintainers [p. 45] or even Interview

5.5. LEARN FROM THE PAST 145

During Demo [p. 69] and based on this knowledge decide how to restruc-
ture that part so that it is better suited for the kind of change requests that
come in.

146 CHAPTER 5. DETAILED MODEL CAPTURE

Part III

Reengineering

147

Chapter 6

Tests: Your Life Insurance!

You are at the beginning of a reengineering project. You know that you
will have to perform radical surgery on many parts of a valuable legacy
system. You are wondering how you will be able to minimize the risks of
changing a system on which your business depends: the risk of breaking
features that used to work, the risk of spending too much effort on the wrong
tasks, the risk of failing to integrate needed new functionality into the system,
and the risk of further increasing maintenance costs.

The patterns presented in this cluster present effective ways of using
tests in a reengineering context to reduce the risks posed by reengineering
changes.

Caveat. Testing is a rich and important subject that can scarcely be covered
in any depth in the few pages we devote to it in this chapter. We have done
no more than identify a few of the more significant testing patterns that are
especially relevant to reengineering projects, and briefly sketch out some
of the key issues. Binder, for example, devotes an entire book to testing
object-oriented systems [Bin99].

Forces

These patterns share common forces that concern various elements of risk
for the evolution of the legacy system. Each pattern addresses some of
these forces in order to achieve a certain balance between effort and risk.

Reengineering Forces

• Legacy systems often do not have test procedures defined.

149

150 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

• Changing parts of a system without introducing new bugs is a chal-
lenging task.

System Development Forces

• Not every aspect of a system can be tested.

• Certain aspects are like concurrency and user interfaces are difficult
to test.

• Under time pressure, writing tests is always the task that is elimi-
nated first.

• Having all the knowledge of a system concentrated in only a few
people poses a high risk for the future of the project.

Human Forces (customers)

• Customers ultimately do not pay for tests but for new features in the
system.

• An unstable or buggy system is not acceptable for customers.

Human Forces (developers)

• Programmers believe they do not need tests, since they write good
code.

• Programmers are not motivated by long term goals since they may
leave the project in a month from now.

• Programmers are more interested in tools and processes that can re-
duce the time they are losing in identifying problems.

• Fixing bugs is not fun.

• Writing tests is not considered to be a noble task.

Overview

As shown in Figure 6.1, Write Tests to Enable Evolution is the root of
this cluster. It explains why systematic tests are critical to reengineering
projects and what kinds of tests are necessary. It is based on Grow Your
Test Base Incrementally which advocates strategies for introducing new
tests as you need them.

In order to effectively manage incremental introduction of tests, it is
important to Use a Testing Framework to structure and organize suites

151

Figure 6.1: When, why, how and what to test.

152 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

of tests. The testing framework should support you in designing certain
styles of tests. In particular, if you Test the Interface, Not the Implementa-
tion of components, by using black-box testing strategies, then your tests
will tend to be more useful in the face of system changes. Furthermore,
if you can Record Business Rules as Tests, then you will have an effec-
tive way to keep the business rules explicitly represented and continu-
ously synchronized with the running system even in the presence of radi-
cal changes.

Tests may be introduced at various times for various reasons. Write
Tests to Understand advocates investing testing effort in those parts of the
system that you need to understand in order to implement changes. More
specifically, it is a good idea to Test Fuzzy Features, to Test Old Bugs, and
especially to Retest Persistent Problems.

The patterns in this cluster directly support Migration Strategies
[p. 181] for reengineering: Regression Test After Every Change [p. 201]
helps you build confidence by ensuring that everything still runs after ev-
ery incremental change to the system. In effect, tests are a necessary pre-
condition to Always Have a Running Version [p. 199], and they enable you
to Migrate Systems Incrementally [p. 191].

6.1. WRITE TESTS TO ENABLE EVOLUTION 153

6.1 Write Tests to Enable Evolution

Intent Protect your investment in the legacy code by imposing a systematic
testing program.

Problem

How do you minimize the risks of a reengineering project, specifically, the
risks of:

• failing to simplify the legacy system,

• introducing yet more complexity to the system,

• breaking features that used to work,

• spending too much effort on the wrong tasks,

• failing to accommodate future change.

This problem is difficult because:

• Impact of changes cannot always be predicted because parts of the
system may not be well-understood or may have hidden dependen-
cies.

• Any change to a legacy system may destabilize it due to undocu-
mented aspects or dependencies.

Yet, solving this problem is feasible because:

• You have a running system, so you can determine what works and
what doesn’t work.

• You know which parts of the system are stable, and which are subject
to change.

Solution

Introduce a testing process based on tests that are automated, repeatable
and stored.

154 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

Hints

Well-designed tests exhibit the following properties:

• Automation. Tests should run without human intervention. Only
fully automated tests offer an efficient way to check after every
change to the system whether it still works as it did before. By mini-
mizing the effort needed to run tests, developers will hesitate less to
use them.

• Persistence. Tests must be stored to be automatable. Each test docu-
ments its test data, the actions to perform, and the expected results.
A test succeed if the expected result is obtained, otherwise it fails.
Stored tests document the way the system is expected to work.

• Repeatability. Confidence in the system is increased if tests can be
repeated after any change is implemented. Whenever new function-
ality is added, new tests can be added to the pool of existing tests,
thereby increasing the confidence in the system.

• Unit testing. Tests should be associated to individual software com-
ponents so that they identify clearly which part of the system they
test [Dav95].

• Independence. Each test should minimize its dependencies on other
tests. Dependent tests typically result in avalanche effects: when
one test breaks, many others break as well. It is important that the
number of failures represent quantitatively the size of the detected
problems. This minimizes distrust in the tests. Programmers should
believe in tests.

Tradeoffs

Pros

• Tests increase your confidence in the system, and improve your abil-
ity to change the functionality, the design and even the architecture
of the system in a behavior-preserving way.

• Tests document how artifacts of a system are to be used. In contrast
to written documentation, running tests are an always up-to-date
description of the system.

• Selling testing to clients who are concerned by security and stability
is not usually a problem. Assuring long term life of the system is
also a good argument.

6.1. WRITE TESTS TO ENABLE EVOLUTION 155

• Tests provide the necessary climate for enabling future system evo-
lution.

• Simple unit testing frameworks exist for all the main object-oriented
languages like Smalltalk, Java, C++ and even Perl.

Cons

• Tests do not come for free. Resources must be allocated to write
them.

• Tests can only demonstrate the presence of defects. It is impossible to
test all the aspects of a legacy system (or any system, for that matter).

• Inadequate tests will give you false confidence. You may think your
system is working well because all the tests run, but this might not
be the case at all.

Difficulties

• A plethora of testing approaches exists. Choose a simple approach
that fits your development process.

• Testing legacy systems is difficult because they tend to be large and
undocumented. Sometimes testing a part of a system requires a large
and complex set-up procedure, which may seem prohibitive.

• Management may be reluctant to invest in testing. Here are some
arguments in favor of testing:

– Testing helps to improve the safety of the system.
– Tests represent a tangible form of confidence in the system func-

tionality.
– Debugging is easier when automated tests exist.
– Tests are simple documentation that is always in sync with the

application.

• Developers may be reluctant to adopt testing. Build a business case
to show them that tests will not only speed up today’s development,
but they will speed up future maintenance efforts. Once we dis-
cussed with a developer who spent one day fixing a bug and then
three days more checking if the changes he made were valid. When
we showed him that automated tests could help him in his daily
work to debug his program more quickly, he was finally convinced.

156 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

• Testing can be boring for developers so at least use the right tools.
For unit testing, SUnit and its many variants are simple, free and
available for Smalltalk, C++, Java and other languages [BG98].

Example

The following code illustrates a unit test written using JUnit in Java[BG98].
The test checks that the add operation defined on a class Money works as
expected, namely that 12 CHF + 14 CHF = 26 CHF.

public class MoneyTest extends TestCase {
public void testSimpleAdd() {

Money m12CHF= new Money(12, "CHF"); // (1)
Money m14CHF= new Money(14, "CHF");
Money expected= new Money(26, "CHF");
Money result= m12CHF.add(m14CHF); // (2)
assert(result.currency().equals(expected.currency())

&& result.amount() == expected.amount()); // (3)
}

}

This satisfies the properties that a test should have:

• This test is automated: It returns boolean value true if the action is
the right one and false otherwise.

• It is stored: it is a method of a test class. So it can be versioned like
any other code.

• It is repeatable: its initialization part (1) produces the context in
which the test can be run and rerun indefinitely.

• It is independent of the other tests.

Using tests having these properties helps you to build a test suite for
the long term. Every time you write a test, either after a bug fix or adding
a new feature, or to test an already existing aspect of the system, you are
adding reproducible and verifiable information about your system into your
test suite. Especially in the context of reengineering a system this fact
is important, because this reproducible and verifiable information can be
checked after any change to see if aspects of a system are compromised.

Rationale

Tests represent confidence in a system, because they specify how parts of
the system work in a verifiable way, and because they can be run at any

6.1. WRITE TESTS TO ENABLE EVOLUTION 157

Automated Tests

Confidence in ChangeTurn-over Risk MinimizationSystem Confidence

Architectural Evolution

Long Term Evolution

System Documentation

Automated Tests

Confidence in ChangeSystem Confidence Turn-over Risk Minimization

Architectural Evolution

Long Term Evolution

System Documentation

Figure 6.2: Automated tests are the foundation for reengineering. They
establish your confidence in the system, reduce risks, and improve confi-
dence in your ability to change the system.

time to check if the system is still consistent.

“... testing simply exposes the presence of flaws in a program; it
cannot be used to verify the absence of flaws. It can increase your
confidence that a program is correct”

— Alan Davis, Principle 111 [Dav95]

Systematic testing is heavily promoted by Extreme Programming
[Bec00] one of the basic techniques necessary to be able to adapt programs
quickly to changing requirements. Changing legacy systems is risky busi-
ness. Will the code still work after a change? How many unexpected side-
effects will appear? Having a set of automated, repeatable tests helps to
reduce this risk.

• A set of running tests provides confidence in the system. (“Are you
really sure this piece of code works?” “Yes, look, here I have the tests
that prove it.”)

• A set of running tests represents reproducible and verifiable informa-
tion about your system, and is at all times in sync with the applica-
tion. This in contrast to most of the written documentation, which is
typically slightly outdated already the next day.

• Writing tests increases productivity, because bugs are found much
earlier in the development process.

Related Patterns

Write Tests to Enable Evolution is a prerequisite to Always Have a Run-
ning Version [p. 199]. Only with a comprehensive test program in place
can you Migrate Systems Incrementally [p. 191].

158 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

Grow Your Test Base Incrementally and Test the Interface, Not the Im-
plementation introduce a way to incrementally build a test suite while a
system is evolving.

6.2. GROW YOUR TEST BASE INCREMENTALLY 159

6.2 Grow Your Test Base Incrementally

Intent Balance the costs and the benefits of tests by incrementally introducing
just the tests you need at a given point in time.

Problem

When should you start to introduce tests? When can you stop?

This problem is difficult because:

• In a reengineering project, you cannot afford to spend too much time
for writing tests.

• Legacy systems tend to be huge, so testing everything is impossible.

• Legacy systems tend to be poorly-documented and poorly-
understood.

• The original developers may have left and the system maintainers
may have only limited knowledge of the system’s inner workings.

Yet, solving this problem is feasible because:

• We know where the fragile parts or the parts that we would like to
change are.

• We could convince programmers that they can benefit from tests.

Solution

Introduce tests incrementally for parts of the system you are working on.

Hints

• Carefully assess your priorities and initially develop tests only for
the most critical components. As you reengineer the system, intro-
duce tests for the new features, parts of the legacy that may be af-
fected, and any bugs you identify along the way.

• Keep a snapshot of the old system handy so you can later introduce
tests that should run against both the original system and its new
incarnation.

160 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

• Focus on business values. Start to write tests for the parts of your
system that have the most important artifacts. Try to Record Busi-
ness Rules as Tests.

• If you have the history of bug fixes or problems, apply Test Old Bugs
[p. 316] as a starting point.

• If you have acceptable documentation and some original develop-
ers of the system at hand, consider applying Test Fuzzy Features
[p. 316].

• Apply Test the Interface, Not the Implementation, start to test big
abstractions and then refine tests if time allows. For example, if you
have a pipeline architecture, start to write tests that ensure you that
the output of the full pipeline is right given the right input. Then
write tests for the individual pipeline components.

• Black-box test parts (subsystems, classes, methods) that are likely to
change their implementation in the future.

Tradeoffs

Pros

• You save time by only developing the tests that you need.

• You build up a base of the most critical tests as the project progresses.

• You build confidence as you go along

• You streamline future development and maintenance activities.

Cons

• You may guess wrong which aspects are critical to test.

• Tests can give you false confidence — untested bugs can still lurk in
the system.

Difficulties

• Setting-up the proper context for the tests may require considerable
time and effort.

• Identifying the boundaries of the components to test is just hard.
Deciding which parts to test and how fine-grained these tests should
be, requires a good understanding of the system and the way you
intend to reengineer it.

6.2. GROW YOUR TEST BASE INCREMENTALLY 161

Example

ABC

C

B

A

ABC

C

B

A

ABC

C

newB

A

Figure 6.3: Introduce tests for the parts of the system you intend to change.

Initially introduce tests only for the subsystems and component you in-
tend to change. In Figure 6.3 we introduce some tests for subsystem ABC
and for its component B. We apply Test the Interface, Not the Implemen-
tation to ensure that the tests for B should also pass for newB.

Note that if we only introduce tests for component B, then we fail to
test its integration with A and C. In any case, it may be that we fail to test
all important aspects, so it is important to incrementally add new tests as
bugs are detected and repaired.

Rationale

An incremental testing strategy allows you to start reengineering efforts
before all the tests are in place. By focussing on just those tests that concern
the parts of the system you are currently changing, you enable change with
a minimal investment in testing, while help your team build confidence as
you grow your tests base.

Related Patterns

Use a Testing Framework to organize your tests.

Test the Interface, Not the Implementation provides a strategy for de-
veloping tests at arbitrary granularities. Record Business Rules as Tests
provides another strategy for testing components that implement business

162 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

logic. Write Tests to Understand helps you prime a test base while you are
still reverse engineering the system.

6.3. USE A TESTING FRAMEWORK 163

6.3 Use a Testing Framework

Intent Encourage developers to write and use regression tests by providing a
framework that makes it easy to develop, organize and run tests.

Problem

How do you encourage your team to adopt systematic testing?

This problem is difficult because:

• Tests are boring to write.

• Tests may require a considerable test data to be built up and torn
down.

• It may be hard to distinguish between test failures and unexpected
errors.

Yet, solving this problem is feasible because:

• Most tests follow the same basic pattern: create some test data, per-
form some actions, see if the results match your expectations, clean
up the test data.

• Very little infrastructure is needed to run tests and report failures
and errors.

Solution

Use a testing framework that allows suites of tests to be composed from
individual test cases.

Steps

Unit testing frameworks, like JUnit and SUnit [BG98], and various com-
mercial test harness packages are available for most programming lan-
guages. If a suitable testing framework is not available for the program-
ming language you are using, you can easily brew your own according to
the following principles:

• The user must provide test cases that set up test data, exercise them,
and make assertions about the results

164 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

• The testing framework should wrap test cases as tests which can dis-
tinguish between assertion failures and unexpected errors.

• The framework should provide only minimal feedback if tests suc-
ceed.

– Assertion failures should indicate precisely which test failed.
– Errors should result in more detailed feedback (such as a full

stack trace).

• The framework should allow tests to be composed as test suites.

Tradeoffs

Pros

• A testing framework simplifies the formulation of tests and encour-
ages programmers to write tests and use them.

Cons

• Testing requires commitment, discipline and support. You must con-
vince your team of the need and benefits of disciplined testing, and
you must integrate testing into your daily process. One way of sup-
porting this discipline is to have one testing coach in your team; con-
sider this when you Appoint a Navigator [p. 25].

Example

JUnit is a popular testing framework for Java, which considerable en-
hances the basic scheme described above. Figure 6.4 shows that the frame-
work requires users to define their tests as subclasses of TestCase. Users
must provide the methods setUp(), runTest() and tearDown(). The default
implementation of setup() and tearDown() are empty, and the default im-
plementation of runTest() looks for and runs a method which is the name
of the test (given in the constructor). These user-supplied hook methods
are then called by the runBare() template method.

JUnit manages the reporting of failures and errors with the help of
an additional TestResult class. In the design of JUnit, it is an instance of
TestResult that actually runs the tests and logs errors or failures. In Fig-
ure 6.5 we see a scenario in which a TestCase, in its run method, passes

6.3. USE A TESTING FRAMEWORK 165

Figure 6.4: JUnit is a popular testing framework for Java that offers much
more flexibility than the minimal scheme described above.

control to an instance of TestResult, which in turn calls the runBare tem-
plate method of the TestCase.

TestCase additionally provides a set of different kinds of standard
assertion methods, such as assertEquals, assertFails, and so on. Each
of these methods throws an AssertionFailedError, which can be distin-
guished from any other kind of exception.

In order to use the framework, we will typically define a new class,
say TestHashtable, that bundles a set of test suites for a given class,
Hashtable, that we would like to test. The test class should extend ju-
nit.framework.TestCase:

import junit.framework.*;
import java.util.Hashtable;

public class TestHashtable extends TestCase {

The instance variables of the test class will hold the fixture - the actual
test data:

private Hashtable boss;
private String joe = "Joe";

166 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

run(tr)
run(tr)

run(tc)

runBare()

setUp()

runTest()

tearDown()

addFailure()

:TestRunner :TestSuite tc:TestCase tr:TestResult

Figure 6.5: In JUnit, tests are actually run by an instance of TestResult,
which invokes the runBare template method of a TestCase. The user only
needs to provide the setUp() and tearDown() methods, and the test method
to be invoked by runTest().

private String mary = "Mary";
private String dave = "Dave";
private String boris = "Boris";

There should be constructor that takes the name of a test case as its
parameter. Its behavior is defined by its superclass:

public TestHashtable(String name) {
super(name);

}

The setUp() hook method can be overridden to set up the fixture. If
there is any cleanup activity to be performed, we should also override
tearDown(). Their default implementations are empty.

protected void setUp() {
boss = new Hashtable();

}

We can then define any number of test cases that make use of the fix-
ture. Note that each test case is independent, and will have a fresh copy of
the fixture. (In principle, we should design tests that not only exercise the
entire interface, but the test data should cover both typical and boundary
cases. The sample tests shown here are far from complete.)

6.3. USE A TESTING FRAMEWORK 167

Each test case should start with the characters “test":

public void testEmpty() {
assert(boss.isEmpty());
assertEquals(boss.size(), 0);
assert(!boss.contains(joe));
assert(!boss.containsKey(joe));

}

public void testBasics() {
boss.put(joe, mary);
boss.put(mary, dave);
boss.put(boris, dave);
assert(!boss.isEmpty());
assertEquals(boss.size(), 3);
assert(boss.contains(mary));
assert(!boss.contains(joe));
assert(boss.containsKey(mary));
assert(!boss.containsKey(dave));
assertEquals(boss.get(joe), mary);
assertEquals(boss.get(mary), dave);
assertEquals(boss.get(dave), null);

}

You may provide a static method suite() which will build an instance
of junit.framework.TestSuite from the test cases defined by this class:

public static TestSuite suite() {
TestSuite suite = new TestSuite();
suite.addTest(new TestHashtable("testBasics"));
suite.addTest(new TestHashtable("testEmpty"));
return suite;

}
}

The test case class should be compiled, together with any class it de-
pends on.

To run the tests, we can start up any one of a number of test runner
classes provided by the JUnit framework, for instance junit.ui.TestRunner
(see Figure 6.6).

This particular test runner expects you to type in the name of the test
class. You may then run the tests defined by this class. The test runner will
look for the suite method and use it to build an instance of TestSuite. If
you do not provide a static suite method, the test runner will automatically
build a test suite assuming that all the methods named test* are test cases.
The test runner then runs the resulting test suite. The interface will report

168 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

Figure 6.6: An instance of java.ui.TestRunner.

Figure 6.7: A successful test run.

6.3. USE A TESTING FRAMEWORK 169

how many tests succeeded (see Figure 6.7). A successful test run will show
a green display. If any individual test fails, the display will be red, and
details of the test case leading to the failure will be given.

Rationale

A testing framework makes it easier to organize and run tests.

Hierarchically organizing tests makes it easier to run just the tests that
concern the part of the system you are working on.

Known Uses

Testing frameworks exist for a vast number of languages, including Ada,
ANT, C, C++, Delphi, .Net (all languages), Eiffel, Forte 4GL, GemStone/S,
Jade, JUnit Java, JavaScript, k language (ksql, from kbd), Objective C,
Open Road (CA), Oracle, PalmUnit, Perl, PhpUnit, PowerBuilder, Python,
Rebol, ‘Ruby, Smalltalk, Visual Objects and UVisual Basic.

Beck and Gamma give a good overview in the context of JUnit [BG98].

170 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

6.4. TEST THE INTERFACE, NOT THE IMPLEMENTATION 171

6.4 Test the Interface, Not the Implementation

Also Known As: Black-Box Testing [Pre94]

Intent Build up reusable tests that focus on external behavior rather than on
implementation details, and thereby will survive changes to the system.

Problem

How can you develop tests that not only protect your software legacy, but
also will continue to be valuable as the system changes?

This problem is difficult because:

• Legacy systems have many features that should continue to function
as the system evolves.

• You cannot afford to spend too much time writing tests while reengi-
neering the system.

• You do not want to waste effort in developing tests that will have to
be changed as you change the system.

Yet, solving this problem is feasible because:

• The interfaces to the components of the system tell you what should
be tested.

• Interfaces tend to be more stable than implementations

Solution

Develop black-box tests that exercise the public interface of your compo-
nents.

Hints

• Be sure to exercise boundary values (i.e., minimum and maximum
values for method parameters). The most common errors occur here.

• Use a top-down strategy to develop black-box tests if there are many
fine-grained components that you do not initially have time to de-
velop tests for.

• Use a bottom-up strategy if you are replacing functionality in a very
focussed part of the legacy system.

172 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

Tradeoffs

Pros

• Tests that exercise public interfaces are more likely to be reusable if
the implementation changes.

• Black-box tests can often be used to exercise multiple implementa-
tions of the same interface.

• It is relatively easy to develop tests based on a component’s interface.

• Focusing on the external behavior reduces considerably the possi-
ble tests to be written while still covering the essential aspects of a
system.

Cons

• Back-box tests will not necessarily exercise all possible program
paths. You may have to use a separate coverage tool to check
whether your tests cover all the code.

• If the interface to a component changes you will still have to adapt
the tests.

Difficulties

• Sometimes the class does not provide the right interface to support
black-box testing. Adding accessors to sample the state of the object
can be a simple solution, but this generally weakens encapsulation
and makes the object less of a black box.

Example

Let’s look back at the test presented in Write Tests to Enable Evolution.
The code we saw earlier was supposed to check whether the add opera-
tion defined on a class Money works as expected. However, we see that
the assert in line (3) actually depends on the internal implementation of
the Money class, because it checks for equality by accessing the parts of
equality.

public class MoneyTest extends TestCase {
// ...

public void testSimpleAdd() {
Money m12CHF= new Money(12, "CHF"); // (1)

6.4. TEST THE INTERFACE, NOT THE IMPLEMENTATION 173

Money m14CHF= new Money(14, "CHF");
Money expected= new Money(26, "CHF");
Money result= m12CHF.add(m14CHF); // (2)
assert(result.currency().equals(expected.currency())

&& result.amount() == expected.amount()); // (3)
}

}

However, if the class Money would override the default equals opera-
tion defined on Object (doing so would also require us to override hash-
Code), the last assert statement could be simplified and would become
independent of the internal implementation.

public class MoneyTest extends TestCase {
// ...

public void testSimpleAdd() {
Money m12CHF= new Money(12, "CHF"); // (1)
Money m14CHF= new Money(14, "CHF");
Money expected= new Money(26, "CHF");
Money result= m12CHF.add(m14CHF); // (2)
assert(expected.equals(result)); // (3)

}
}

Rationale

The interface of a component is a direct consequence of its collaborations
with other components. Black-box tests therefore have a good chance of
exercising the most important interactions of a system.

Since interfaces tend to be more stable than implementations, black-
box tests have a good chance of surviving major changes to the system,
and they thereby protect your investment in developing tests.

Known Uses

Black-Box testing is a standard testing strategy [Som96].

Related Patterns

Record Business Rules as Tests adopts a different strategy to developing
tests which focuses on exercising business rules. This is fine if the compo-
nents to be tested are the ones that implement the business logic. For most

174 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

other components, Test the Interface, Not the Implementation will likely
be more appropriate.

Components that implement complex algorithms may not be well-
suited to black-box testing, since an analysis of the interface alone may
not reveal all the cases that the algorithm should handle. White-box test-
ing [Som96] is another standard technique for testing algorithms in which
test cases are generated to cover all possible paths through an algorithm.

6.5. RECORD BUSINESS RULES AS TESTS 175

6.5 Record Business Rules as Tests

Intent Keep the system in sync with the business rules it implements by encod-
ing the rules explicitly as tests.

Problem

How do you keep the actual business rules, the documentation about those
business rules and the system implementation in sync, while all three are
changing?

This problem is difficult because:

• Written documentation gets out of date quickly and does not ensure
you that your system really implements the description of the busi-
ness rules you have.

• Business rules tend to be implicit in the code. It may not be obvi-
ous which pieces of software are responsible for computing a given
business rule.

• Developer turn-over introduces a high risk for your business by hav-
ing more and more people knowing less and less about the system.

• Most of the time only one programmer or user knows specific rules,
and that person could be leaving tomorrow.

• Business rules are likely to change due to external factors, such as
the introduction of a new law, so it is important to represent them
explicitly.

Yet, solving this problem is feasible because:

• Most business rules are well expressed by sets of canonical examples,
each of which requires certain well-defined actions to be taken, and
results in some clear, observable results.

Solution

Write executable tests that record the business rules as test cases, actions,
and tests over the results. When tests break, you know that things are out
of sync.

176 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

Hints

• Developers and clients can write tests. Developers may write tests
associated with specific functionality or piece of code. User may also
have to write integration tests in the form of use cases that bind to-
gether several unit tests [Dav95] [Bec00].

• Note that you are not interested in the implementation strategies or
optimization aspects, but only the business rules.

Tradeoffs

Pros

• The rules become explicit, thereby reducing dependency on human
memory.

• You need to record the business rules anyway before you can reengi-
neer the legacy system.

• Recording business rules as tests enables evolution: when new fea-
tures must be added, you can check that the existing business rules
are still correctly implemented by running the regression tests. On
the other hand, when the business rules change, you can update the
corresponding tests to reflect the changes.

Cons

• Tests can only encode concrete scenarios, not actual the logic of the
business rules themselves.

• When the business logic must deal with an extremely large number
of cases, it may be impractical to test them all.

Difficulties

• Recording business rules does not mean extracting them. Extract-
ing business rules from code with the current technology is a pipe
dream.

• Recording business rules can be difficult for system whose original
developers and users have all left.

6.5. RECORD BUSINESS RULES AS TESTS 177

Examples

In this example we compute the amount of additional money an employee
receives for a child. The rule states that a person or couple gets an amount
of money for every child he, she or they raise. Basically parents get CHF
150,- per month for every child younger than 12 years, and CHF 180,- for
every child between 12 and 18 and for every child between 18 and 25 as
long as the child is not working and is still in the educational system. A
single parent gets the full 100% of this money as long as he or she is work-
ing more than 50%. Couples get a percentage of the money that is equal to
the summed working percentages of both partners.

The following Smalltalk code shows a test that hardcodes the ex-
pected outcomes for the different computations. It allows for automati-
cally checking the outcomes instead of having to print the outcomes and
check by hand if they are right, and it acts as a regression test. Secondly it
documents the expected outcome of the different computations.

testMoneyGivenForKids
| singlePerson80occupationWithOneKidOf5

couplePerson40occupationWithOneKidOf5
couplePerson100occupationWith2KsidOf5
couplePersonWithOneKidOf14 |

"cases are extracted from a database after the system has
performed the computation"

singlePerson80WithOneKidOf5 := extract....
couplePerson40occupationWithOneKidOf5 := extract....
couplePerson100occupationWithOneKidOf5 := extract....
couplePersonWithOneKidOf14 := extract....
"tests"

"We test that the right amount of money is computed correctly"

self assert: singlePerson80occupationWithOneKidOf5 moneyForKid =
150.

self assert: couplePerson40occupationWithOneKidOf5 moneyForKid =
150*4.

self assert: couplePerson100occupationWith2KidsOf5 moneyForKid =
150*2.

self assert: couplePersonWithOneKidOf14 moneyForKid = 180.

178 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

Rationale

Tests are a good way to document what the system does. By documenting
business rules as tests, you guarantee that the description of the business
rules will be in sync with the implementation.

The beginning of a reengineering project is a good point in time to set
up a process to document knowledge about the system as explicit tests.

Related Patterns

While you are reverse engineering a legacy system, you may Write Tests
to Understand. During this process it will be natural to Record Business
Rules as Tests. In this way you can prime your test base as you Grow Your
Test Base Incrementally.

6.6. WRITE TESTS TO UNDERSTAND 179

6.6 Write Tests to Understand

Intent Record your understanding of a piece of code in the form of executable
tests, thus setting the stage for future changes.

Problem

How do you develop an understanding of a part of a legacy system which
contains neither tests nor accurate and precise documentation?

This problem is difficult because:

• Code is always difficult to understand.

• You would like to make hypotheses about what the code is really
doing and validate them.

• You would like to specify as precisely as possible the behavior of the
system.

• You would like to record your understanding to communicate it but
you do not want to waste your time in writing documents that will
be obsolete as soon as you start changing the code.

Yet, solving this problem is feasible because:

• The piece of code is relatively small and has clearly defined bound-
aries.

• You have the possibility to specify tests and validate them.

Solution

Encode your hypotheses and conclusions as executable tests.

Tradeoffs

Pros

• Tests help you to validate your understanding.

• Tests can provide a precise specification of certain aspects of the sys-
tem. Tests cannot be fuzzy.

180 CHAPTER 6. TESTS: YOUR LIFE INSURANCE!

• Tests can be applied to gain different levels of understanding. For
example, black-box tests can help you to refine your understanding
of roles and collaborations, whereas white-box tests can help you to
gain understanding of the implementation of complex logic.

• The tests that you develop will help to enable future reengineering
effort.

• Tests will force you to be precise about the creation and the use of
the objects under test.

Cons

• Writing tests is time consuming.

Difficulties

• Obtaining a well defined context in which you can test the objects
is difficult especially if the objects to be tested do not represent spe-
cific abstractions. Looking for the places where objects you want to
understand are created can help.

• Concurrent systems are known to be difficult to test, so tests can miss
important aspects (such as handling of race conditions).

Rationale

By writing automated tests, you exercise parts of the system you want to
understand, while recording your understanding and setting the stage for
future reengineering effort.

Related Patterns

Before writing any tests, you might want to Refactor to Understand
[p. 127]. As you write your tests, be sure to Tie Code and Questions
[p. 121].

Chapter 7

Migration Strategies

Your reengineering project is well underway. You have developed a good
understanding of the legacy system and you have started to Write Tests
to Enable Evolution [p. 153]. You have gone through a process of Setting
Direction and have decided to tackle the Most Valuable First [p. 29].

How can you be sure that the new system will be accepted by users?
How do you migrate to the new system while the old system is being
used? How can you test and evaluate the new system before it is finished?

Forces

• Big-bang migration carries a high risk of failure.

• Introducing too many changes at once may alienate users.

• Constant feedback helps you stay on track, though it may be difficult
and costly to achieve.

• Users have to get their work done; they don’t want to be distracted
by incomplete solution.

• Legacy data must survive while the system is being used.

Overview

It is not enough to reengineer a legacy system and then deploy it. In fact,
if you try this, you will surely fail (for the same reasons that big Water-
fall projects in new territories often fail). You must be prepared to intro-
duce the new solution gradually, to gain the confidence and collaboration

181

182 CHAPTER 7. MIGRATION STRATEGIES

Figure 7.1: How, why and whither to migrate legacy systems.

of the users, and you must adopt a strategy for migrating gradually and
painlessly from the existing system, while it is still being deployed, to the new
system.

The central message of this cluster is to Migrate Systems Incrementally.
This is, however, easier said than done. In figure 25 we can see that in or-
der to Migrate Systems Incrementally, we should consider a large number
of other patterns. Since there exists a vast literature on system migration,
we do not attempt to cover the topic in great detail. We have selected,
however, the patterns that we consider to be most important for reengi-
neering object-oriented legacy systems, and summarized the main points.
Where appropriate, we point the reader to further sources of information.

Although the central pattern of this cluster is Migrate Systems Incre-
mentally, the key motivation is provided by Involve the Users and Build
Confidence. These first three patterns are fundamental patterns for mini-
mizing risk and increasing the chances of success:

• Involve the Users increases the chance that users will accept the new
system by involving them closely in the entire reengineering pro-
cess, getting them to use intermediate results, and providing them
with strong support. It is easier to achieve if you Migrate Systems
Incrementally and Build Confidence step by step.

• Build Confidence helps you overcome skepticism and doubt by reg-

183

ularly delivering results that are of value to the users.

• Migrate Systems Incrementally recommends that the old system be
gradually and incrementally replaced by the new system. New re-
sults can then be integrated as you proceed, thus helping you to
Build Confidence and Involve the Users.

It is very hard to Migrate Systems Incrementally unless you also adhere
to the following practices:

• Prototype the Target Solution to test the new architecture and new
technical risks. It is too easy to be tempted to think you don’t need
a prototype since you already have a running system, but this is al-
most always a mistake.

• Always Have a Running Version helps to keep changes in sync by
ensuring that they are integrated frequently.

• Regression Test After Every Change helps to you Always Have a
Running Version by making sure that everything that used to run
still runs. It presupposes that you Write Tests to Enable Evolution
[p. 153].

Depending on the circumstances, there are various practices that may
help you to Migrate Systems Incrementally:

• Make a Bridge to the New Town introduces the metaphor of a (data)
“bridge” to allow you to gradually migrate data from a legacy com-
ponent to its replacement, while the two run in tandem. When all
the data have been transferred, the legacy component can be retired.

• Present the Right Interface helps you to develop the target system in
increments by wrapping the old functionality to export the abstrac-
tions you really want.

• Distinguish Public from Published Interface distinguishes between
stable (public) and unstable (published) interfaces to facilitate paral-
lel development within a reengineering team.

• Deprecate Obsolete Interfaces lets you gracefully retire obsolete in-
terfaces without immediately invalidating clients.

Finally, the following two practices may help you avoid making radi-
cal, but unnecessary changes:

• Conserve Familiarity warns you against introducing radical inter-
face changes that may alienate users.

184 CHAPTER 7. MIGRATION STRATEGIES

• Use Profiler Before Optimizing [p. 221] reminds you to delay consid-
ering performance issues until you can demonstrate that you have a
problem and can pinpoint the source of the problem.

7.1. INVOLVE THE USERS 185

7.1 Involve the Users

Also Known As: Engage Customers [Cop95]

Intent Maximize acceptance of changes by involving the users at every step.

Problem

How can you be sure that users will accept the reengineered system?

This problem is difficult because:

• The old systems works. It is clunky, but the users know how it works
and know how to get around the problems.

• People hate to have to learn something new unless it really makes
their life simpler.

• User perceptions of what is needed to improve a system tend to
change as the system evolves.

• Users can have difficulty evaluating a paper design.

• It is hard to get excited about a new system that is not ready to use.

Yet, solving this problem is feasible because:

• Users will try new solutions if they see that their needs are being
seriously addressed.

• Users will give you feedback if you give them something useful to
use.

Solution

Get the users directly involved in the new development, and support them
closely in using the new system.

Steps

Get the users to tell you where their priorities lie. Start with Most Valu-
able First [p. 29]. Break the priorities down into small steps that can be
delivered in regular increments, so you can Build Confidence [p. 189].

186 CHAPTER 7. MIGRATION STRATEGIES

Create an environment that will encourage contact between users and
developers. Physical location is important.

Establish simple procedures for delivering intermediate results on a
regular basis and obtaining feedback. Early prototypes may help, espe-
cially to evaluate risky new technologies or approaches. A good strategy is
to Migrate Systems Incrementally [p. 191] so that users can start using the
new system as it is being built. You should Conserve Familiarity [p. 219]
to avoid alienating users.

Tradeoffs

Pros

• Requirements will continuously be validated and updated, increas-
ing your chances that you will move in the right direction.

• If the users feel they are getting useful results and they are being
supported, they will put extra effort into giving useful feedback.

• Users will be involved throughout the effort, eliminating the need
for a special training session late in the project.

Cons

• Developers may feel that supporting users is distracting them from
the job of reengineering the system.

• If you succeed in involving the users, this will raise expectations and
put extra pressure on your team. For instance, Yourdon mentions
that prototypes can really raise expectations too much and that you
should always make clear which parts are not yet working [You97].

Difficulties

• It can be hard to involve the users initially, before you have shown
any results.

• You can’t involve everybody, and the users who are left out might
feel neglected.

Rationale

You need a feedback loop to ensure that you are addressing the real cus-
tomer needs. By involving and supporting the users, you encourage this

7.1. INVOLVE THE USERS 187

feedback loop.

Coplien points out: “Note that ‘maintaining product quality’ is not the
problem being solved here. Product quality is only one component of customer
satisfaction.” [Cop95]

Related Patterns

Virtually all of the patterns in this cluster support Involve the Users. Mi-
grate Systems Incrementally to get the users working with the system as it
is being reengineered and thereby Build Confidence.

The Planning Game [BF01] is an effective technique to Involve the
Users by iteratively identifying stories, estimating costs, and committing
to the stories to be released.

188 CHAPTER 7. MIGRATION STRATEGIES

7.2. BUILD CONFIDENCE 189

7.2 Build Confidence

Intent Improve your chances of overall success by demonstrating results in reg-
ular increments.

Problem

How can you overcome the high degree of skepticism that customers and
team members often have for any kind of software project?

This problem is difficult because:

• Few software projects meet requirements, come in on time, and
stay within budget. The skepticism that accompanies most projects
can easily lead to defeatism, and projects can fail as a self-fulfilling
prophecy.

• Users rarely get what they really want or need.
• It can be hard to convince either the users or even your own team

that the legacy system can really be salvaged.

Yet, solving this problem is feasible because:

• You don’t need to solve all the problems at once.

Solution

Create a positive atmosphere by demonstrating some positive results as
early as you can, and continue to do so on a regular basis.

Steps

Pick short intervals for delivering new results. At each step, try to agree
together with the users what are the smallest results that can demonstrate
real value.

Tradeoffs

Pros

• Both users and developers can measure real progress.
• It is easier to estimate the cost of smaller steps.

190 CHAPTER 7. MIGRATION STRATEGIES

Cons

• It takes time to frequently synchronize with the users.

• Users may resent the extra work it takes to use the new system in
tandem with the old one.

• If you succeed to demonstrate good results early in the project, you
may raise expectations too high.

Difficulties

• Some requirements can be hard to break down into small steps, par-
ticularly if they entail architectural changes to the system.

• Reengineering teams must be careful not to alienate the developers
of the original system, since they are one of the most valuable sources
of information.

• It is not enough to convince users — you must also take care to get
commitment from management. It is hard to convince management
in small steps. Plan big demos at regular intervals.

Rationale

By taking smaller steps, you reduce the risk that an individual step will
fail. Frequent, positive results help to build confidence. By the same token,
Extreme Programming advocates Small Releases [Bec00]. Even negative
results help you to monitor progress and understand better the situation,
and so help to build up confidence.

Related Patterns

Prototype the Target Solution and Make a Bridge to the New Town can
make it easier to demonstrate results in small steps.

It is easier to Build Confidence if you Involve the Users.

7.3. MIGRATE SYSTEMS INCREMENTALLY 191

7.3 Migrate Systems Incrementally

Also Known As: Chicken Little [BS95]

Intent Avoid complexity and risk of big-bang reengineering by deploying func-
tionality in frequent increments.

Problem

When should you plan to deploy the new system?

This problem is difficult because:

• Projects are often planned and funded on large time scales, with “big
bang” requirements specification done up front.

• The real requirements are often only clear in hindsight. Users will
resist adopting a new system that is radically different from what
they are used to, especially if it does not work flawlessly from the
beginning.

• The longer you wait to deploy the new system, the longer you must
wait to get user feedback.

• You cannot deploy an incomplete system. Users do not have time to
waste on incomplete solutions.

Yet, solving this problem is feasible because:

• You have a running system that can be extended and modified.

Solution

Deploy a first update of the legacy system as soon as you can, and migrate
incrementally to the target system.

Steps

• Decompose the legacy system into parts.

• Choose one part to tackle at a time.

• Put tests in place for that part and the parts that depend on it.

192 CHAPTER 7. MIGRATION STRATEGIES

• Take appropriate steps to wrap, reengineer or replace the legacy
component.

• Deploy the updated component and obtain feedback.

• Iterate.

Tradeoffs

Pros

• You get user feedback early and Build Confidence.

• You see immediately when things break.

• Users learn the new system as it’s being built.

• The system is always deployed.

• The system is always being tested, so you can’t skip testing.

Cons

• You will have to work harder to keep the system running while you
are changing it.

Difficulties

• It can be difficult to migrate to a new architecture. You may want
to Prototype the Target Solution to get the new architecture in place,
and Present the Right Interface to the old system to hide the legacy
interfaces while you migrate the underlying components.

• It is risky to change a running system. Be sure to Regression Test
After Every Change.

Rationale

You get the best user feedback from a running system. Users are more
motivated and involved with a system they use daily.

Known Uses

Migrating Legacy Systems [BS95] introduces this pattern under the name
“Chicken Little” (to migrate incrementally means to “take Chicken Little

7.3. MIGRATE SYSTEMS INCREMENTALLY 193

steps”). This book discusses in great detail strategies and techniques for
incremental migration.

Related Patterns

Apply Most Valuable First [p. 29] to select the legacy components to work
on first. Appoint a Navigator [p. 25] to maintain architectural integrity.

Write Tests to Enable Evolution [p. 153], and Grow Your Test Base In-
crementally [p. 159] as you migrate. Be sure to Test the Interface, Not the
Implementation [p. 171] so you do not always have to rewrite your tests as
you reengineer or replace legacy components. Regression Test After Every
Change [p. 201] so you can Always Have a Running Version [p. 199].

Consider applying Present the Right Interface for legacy components
that you do not intend to reengineer or replace.

You might consider to Make a Bridge to the New Town [p. 203] if you
need to migrate data from legacy components that you are replacing.

194 CHAPTER 7. MIGRATION STRATEGIES

7.4. PROTOTYPE THE TARGET SOLUTION 195

7.4 Prototype the Target Solution

Intent Evaluate the risk of migrating to a new target solution by building a
prototype.

Problem

How do you know if your ideas for the new target system will work?

This problem is difficult because:

• It is risky to make radical changes to a working system.

• It can be hard to anticipate how design changes will impact existing
functionality.

• A solution that works is more believable than one that one that has
not been tested.

Yet, solving this problem is feasible because:

• You don’t need to reengineer the whole legacy system to test the new
ideas.

Solution

Develop a prototype of the new concept and evaluate it with respect to the
new, emerging requirements.

Steps

• Identify the biggest technical risks for your reengineering project.
Typically they will concern things like:

– choice of a new system architecture
– migration of legacy data to new system
– adequate performance — or performance gains — with new

technology or platform (for example, demonstrating that a cer-
tain transaction throughput can be achieved)

• Decide whether to implement an exploratory (i.e., throwaway) pro-
totype that will service purely to evaluate the feasibility of a techni-
cal option, or rather an evolutionary prototype that will eventually
evolve into the new target system.

196 CHAPTER 7. MIGRATION STRATEGIES

– An exploratory prototype must be designed to answer very pre-
cise questions. These may be purely technical questions, such
as whether the new platform can meet performance constraints
set by the legacy system, or they may be usability questions
which require participation of and evaluation by the users. The
exploratory prototype does not need to be designed to address
any other issues or questions, and will not be part of the mi-
grated system (although the answers it provides will influence
the new system).

– An evolutionary prototype, on the other hand, is intended to
eventually replace a legacy component, and must therefore re-
flect the target architecture. The new architecture most not only
adequately support the legacy services, but also overcome the
obstacles that limit the legacy solution’s usefulness. The proto-
type must be design to answer these risks first.

Tradeoffs

Pros

• A prototype can be built quickly, since it does not have to implement
all the functionality of the legacy system.

• You can hack parts of the legacy system to get your prototype run-
ning.

• You can learn quickly if your ideas for the target system are sound.

Cons

• Users may not be highly motivated to spend a lot of time evaluating
a throwaway prototype.

• You may be tempted to continue to develop the throwaway proto-
type.

Difficulties

• It may be hard to convince yourself or your customer of the need for
a prototype — after all, you already have a running system.

• It can take too much time to get an evolutionary prototype up to
speed. Consider applying Present the Right Interface to legacy com-
ponents to provide a good interface for legacy services to the proto-
type.

7.4. PROTOTYPE THE TARGET SOLUTION 197

Rationale

A prototype can tell you quickly whether a certain technical approach is
sound or not. Brooks in The Mythical Man-Month [Bro75] advises us to
“write one to throw away” since it is hard to get it right the first time.

Love [Lov93] takes this one step further and warns us that, for object-
oriented systems we should “write two to throw away"! Foote and Yoder
[FY00] argue that, among other things, Throwaway Code is often the best
way to clarify domain requirements, but they also warn that a prototype
risks evolving into a “Big Ball of Mud”.

Related Patterns

You might consider applying Make a Bridge to the New Town to migrate
legacy data to an evolutionary prototype.

198 CHAPTER 7. MIGRATION STRATEGIES

7.5. ALWAYS HAVE A RUNNING VERSION 199

7.5 Always Have a Running Version

Intent Increase confidence in changes by regularly rebuilding the system.

Problem

How do you convince your customer that you are on the right path?

This problem is difficult because:

• It can be hard to demo a software system under development, or to
discuss problems with users since there is often no stable, running
version of the system available.

• Integrating changes from multiple versions of a system can be slow
and painful.

Yet, solving this problem is feasible because:

• You don’t have to wait until a component is “finished” before inte-
grating it.

Solution

Institute a discipline of integrating new changes and developments on a
daily basis.

Steps

• Have version management and configuration management systems
in place.

• Make sure you have regression tests in place for the parts you are
working on.

• Institute a discipline of short transactions for checking out system
components and checking them back in again. Plan iterations to be
as short as possible to allow changes to be integrated into a running
system.

200 CHAPTER 7. MIGRATION STRATEGIES

Tradeoffs

Pros

• You always have a working version to demo.

• You can always have a working version to run your regression tests.

• You can quickly validate your changes, thereby helping you to Build
Confidence.

Cons

• You must continuously integrate changes.

Difficulties

• Large systems may have very long build times. You may need to
rearchitect the system first to enable shorter build times.

• It can be hard to break some kinds of large modifications into mean-
ingful updates that can be individually integrated.

Rationale

Many practitioners advocate a process of continuous integration as a way
to avoid a risky and painful big-bang integration [Boo94].

Related Patterns

Regression Test After Every Change minimizes the risk of defects creeping
in during integration.

Continuous Integration [Boo94] [Bec00] is a proven way to Always
Have a Running Version.

7.6. REGRESSION TEST AFTER EVERY CHANGE 201

7.6 Regression Test After Every Change

Intent Build confidence by making sure that whatever worked before still works.

Problem

How can you be sure that the last change you made won’t break the sys-
tem?

This problem is difficult because:

• In a complex system, small changes can have unexpected side effects.
A seemingly innocuous change may break something without this
being immediately discovered.

Yet, solving this problem is feasible because:

• You have written test suites that express how the system should be-
have.

Solution

Run your regression test suite every time you think you have reached a
stable state.

Tradeoffs

Pros

• It is easier to Always Have a Running Version.

• It is easier to Build Confidence as you proceed.

Cons

• You must relentlessly write the tests.

Difficulties

• The legacy system may not have adequate regression tests defined.
To enable evolution, you will have to Grow Your Test Base Incremen-
tally [p. 159]

202 CHAPTER 7. MIGRATION STRATEGIES

• Tests can only show that defects are present, not that they are absent.
You may have failed to test precisely the aspect that you have broken.

• Run the tests may be very time-consuming, so you might want to
run only those tests that you think might be affected by your change.
Categorize your tests to avoid “ad hoc” testing of changes, but run
all the tests at least once a day.

Rationale

Regression tests tell you that whatever ran before still runs. If you con-
sistently build up tests for defects you discover and new features, you
will end up with a reusable test base that gives you confidence that your
changes are sound, and helps you detect problems earlier.

Davis advocates “Regression Test After Every Change” [Dav95] as
standard Software Development practice.

Related Patterns

You should have already started to Write Tests to Enable Evolution
[p. 153].

A common practice in Extreme Programming is to write tests before you
implement new functionality [JAH01]. In the context of reengineering,
you should consider writing tests that will fail before you make a change,
and will pass if the change is correctly implemented. (Unfortunately it is
not generally possible to design tests that will only pass if the change is
correct!)

Regression tests should help you to Retest Persistent Problems [p. 316].

7.7. MAKE A BRIDGE TO THE NEW TOWN 203

7.7 Make a Bridge to the New Town

Also Known As: The Bridge to the New Town [Kel00], Keep the Data —
Toss the Code [BS95]

Intent Migrate data from a legacy system by running the new system in paral-
lel, with a bridge in between.

Problem

How do you incrementally migrate data from a legacy system to its re-
placement while the two systems are running in tandem?

This problem is difficult because:

• Some components of the legacy system are beyond repair and should
be replaced.

• Big-bang replacement of critical components is highly risky.

• The data manipulated by the legacy components must be kept avail-
able and alive during the migration.

Yet, solving this problem is feasible because:

• You have a running legacy system.

Solution

Make a (data) bridge that will incrementally transfer data from the legacy
system to the replacement system as new components are ready to take
the data over from their legacy counterparts.

Steps

• Identify legacy and replacement components that deal with the same
logical data entities.

• Implement a “data bridge” which is responsible for redirecting read
requests from the new component to the legacy data source, if the
data have not already been migrated. The bridge is responsible for
any necessary data conversion. The new component should not be
aware of the bridge.

204 CHAPTER 7. MIGRATION STRATEGIES

New System

Bridge

Legacy System Data Store

1:read()

1.1:read()

2:write()

1.2:write()
2.1:write()

Figure 7.2: A Bridge helps you to transparently transfer data to the new
system.

• Adapt the legacy component to redirect write requests to the new
component, so that the new data stay up-to-date.

• When all the data have been transferred, remove the bridge and the
legacy component.

Tradeoffs

Pros

• You can start using the new system without migrating all the legacy
data.

Cons

• A data bridge can be tricky to implement correctly if there is not a
simple mapping between the legacy data and the new data.

• Once some of the data has been transferred, it can be hard to go back.

• The data bridge will add a performance overhead which may or may
not be acceptable.

Difficulties

• “Stepwise migration schemes have proven very effective in large, layered
business systems. They are not common in let’s say CAD applications that
have check in /check out persistence and a tightly coupled and very woven
object net.” [Kel00]

7.7. MAKE A BRIDGE TO THE NEW TOWN 205

Known Uses

Brodie & Stonebraker discuss much more thoroughly the use of data
bridges and gateways in Migrating Legacy Systems [BS95].

Keller in “The Bridge to the New Town” [Kel00] focusses more on the
technical issue of migrating legacy data, and he points out numerous ex-
amples of the pattern successfully being applied.

There are many possible variants of this pattern, depending on
whether the entire legacy system is to be replaced, or only a component,
and whether users should be able to have access to both systems at the
same time or not.

Rationale

A bridge between the old and new systems allows you to let users start
using features of the new system before it is complete. The bridge isolates
the two systems from each other so that the new system can be developed
according to a new architectural vision without influence from the legacy
system.

Related Patterns

A bridge helps you Migrate Systems Incrementally and thereby Build Con-
fidence.

206 CHAPTER 7. MIGRATION STRATEGIES

7.8. PRESENT THE RIGHT INTERFACE 207

7.8 Present the Right Interface

Also Known As: Semantic Wrapper [O’C00], Sweeping it Under the Rug
[FY00]

Intent Wrap a legacy system to export the right abstractions, even if they are
not reflected in the existing implementation.

Problem

How should the new target system access legacy services during the mi-
gration process?

This problem is difficult because:

• The target system is not yet complete so you must rely on legacy
services during the migration.

• The legacy system does not present the interfaces you need for the
target system.

• Implementing new components directly in terms of legacy compo-
nents will bias the target towards the legacy architecture and design.

Yet, solving this problem is feasible because:

• You don’t have to access the legacy services directly.

Solution

Identify the abstractions that you want to have in the new system, and
wrap up the old software to emulate the new abstractions.

Hints

Consider, for example, a procedural graphics library that will be used
within an object-oriented system. It will be too costly and time-consuming
to reimplement the library in an object-oriented way. It would be easier
to wrap it as a utility class (i.e., as a class with static methods but no in-
stances), but it would be wiser to write a slightly thicker wrapper that
presents a truly object-oriented interface, but is implemented using the
underlying procedural abstractions. In this way the new system will not
be polluted by legacy abstractions.

208 CHAPTER 7. MIGRATION STRATEGIES

Tradeoffs

Pros

• It is easier to wean the target system from legacy services if they can
use appropriate abstractions from the start.

• You reduce the risk that the legacy design will adversely influence
the new target.

Cons

• The new interface may not be stable, so developers may be reluctant
to use it.

Difficulties

• It can be hard to resist the temptation to simply wrap the procedural
abstractions as utility classes.

Known Uses

Alan O’Callaghan [O’C00] presents this pattern as “Semantic Wrapper”
briefly in the context of the ADAPTOR pattern language, which addresses
migration of large-scale business-critical legacy systems to object-oriented
and component-based technology.

Rationale

Present the Right Interface frees you from thinking in terms of the legacy
design and makes it easier to consider alternative approaches.

Related Patterns

Present the Right Interface superficially resembles an Adapter [p. 319],
since both use wrappers as their implementation technique. An Adapter,
however, adapts an incompatible interfaces to another interface expected
by its clients. Present the Right Interface, on the other hand, introduces a
new, more suitable interface to a legacy component.

Be sure to Deprecate Obsolete Interfaces.

7.8. PRESENT THE RIGHT INTERFACE 209

If the new interface implemented by the Present the Right Interface is
not stable, you should Distinguish Public from Published Interface.

210 CHAPTER 7. MIGRATION STRATEGIES

7.9. DISTINGUISH PUBLIC FROM PUBLISHED INTERFACE 211

7.9 Distinguish Public from Published Interface

Also Known As: Published Interface [O’C00]

Intent Facilitate parallel development by distinguishing unstable “published
interfaces” from stable “public interfaces”.

Problem

How do you enable migration from legacy interfaces to new target inter-
faces while the new interfaces are still under development?

This problem is difficult because:

• You want to enable migration to the new target system as early as
possible.

• You do not want to freeze the interfaces of new target components
too early.

• Changing the interface to a component that is widely used will slow
down development.

Yet, solving this problem is feasible because:

• You can control the status of the interfaces you provide.

Solution

Distinguish between public interfaces of components that are available to
the rest of the system, and unstable “published” interfaces of components
that are available within a subsystem, but are not yet ready for prime time.

Hints

Since “published” interfaces are not supported by any programming lan-
guage, you may have to use naming conventions, or abuse other features
to achieve the desired effect.

• In Java, consider declaring such interfaces as protected, or giving
them package scope (undeclared). When the interfaces stabilize, you
may redeclare them as being public.

212 CHAPTER 7. MIGRATION STRATEGIES

• In C++, consider declaring components with published interfaces
private or protected, and declare as friends the clients that are per-
mitted to use them. When the interfaces stabilize, redeclare the com-
ponents as public, and delete the declarations of friends.

• In Smalltalk, consider declaring categories of published components.
Also consider declaring published message categories to distinguish
stable and unstable messages.

• Consider decorating the names of unstable components or interfaces
to indicate their “published” status. When the component becomes
public, rename it and patch all its clients or deprecate the version
with the old name (Deprecate Obsolete Interfaces).

Tradeoffs

Pros

• Clients of published interfaces are aware that they are likely to
change.

Cons

• Identifying an interface as “published” is purely a matter of conven-
tion and discipline.

• Promoting an interface from published to public entails a certain
overhead for clients who should upgrade to the new interface.

Difficulties

• Clients can be put in a bind: should they use an unstable published
interface, or continue to use the legacy service?

Known Uses

Published Interface is another pattern of the ADAPTOR pattern language
[O’C00].

Rationale

Clients are in a better position to evaluate the risk of using a component if
they know its interface is declared to be “published” but not yet public.

7.9. DISTINGUISH PUBLIC FROM PUBLISHED INTERFACE 213

Related Patterns

When you Present the Right Interface to a legacy component, the new in-
terface may not be stable, so be careful to Distinguish Public from Pub-
lished Interface. When the new interface stabilizes, or is substituted by a
stable replacement component, the interface may become public.

Upgrading an interface to public may entail a change to the way it is
accessed. Be sure to Deprecate Obsolete Interfaces.

214 CHAPTER 7. MIGRATION STRATEGIES

7.10. DEPRECATE OBSOLETE INTERFACES 215

7.10 Deprecate Obsolete Interfaces

Also Known As: Deprecation [SP98]

Intent Give clients time to react to changes to public interfaces by flagging
obsolete interfaces as “deprecated”.

Problem

How do you modify an interface without invalidating all the clients?

This problem is difficult because:

• Changing a public interface can break many clients.

• Leaving an obsolete interface in place will make future maintenance
more difficult.

• Not all changes are for the better.

Yet, solving this problem is feasible because:

• The old and the new interfaces can coexist for a period of time.

Solution

Flag the old interface as being “deprecated”, thereby notifying clients that
it will almost certainly be removed in the next upcoming release.

Steps

• You have determined that a public interface should be changed, but
you do not want to break all clients. Implement the new interface,
but “deprecate” the old one. The deprecation mechanism should
inform clients that the interface has changed, and that a newer inter-
face is recommended instead.

• Evaluate to what extent the deprecated interface continues to be
used, and whether it can be permanently retired. Consider removing
it in a future release.

• Java supports deprecation as a language feature:

216 CHAPTER 7. MIGRATION STRATEGIES

– Deprecate a feature by adding the tag @deprecated to its
javadoc documentation. The tag is not only recognized by the
javadoc documentation generator, but the compiler will also
generate compile-time warnings if code using deprecated fea-
tures is compiled with the -deprecated option.

• Other approaches are:

– Simply inform users in the documentation which interfaces are
deprecated.

– Move or rename the deprecated interface or component. Clients
can continue to use them, but must adapt and recompile to con-
tinue to use the deprecated form.

– Replace deprecated components by equivalent ones that gener-
ate run-time warnings or output warnings to a log file.

– Alternatively, consider configuring the programming environ-
ment or the deprecated components themselves to generate
compile-time or link-time warnings.

Tradeoffs

Pros

• Clients do not have to immediately adapt to changes.

• There is time to change your mind.

Cons

• Clients are free to ignore deprecation.

Difficulties

• It may be hard to track down all the clients of a deprecated compo-
nent.

• It can be hard to decide when to really retire a deprecated compo-
nent.

• If you want to keep the interface but change the semantics, you may
need to introduce a new component and deprecate the old one. This
can be the case if certain methods should now return default values
instead of throwing exceptions (or vice versa).

7.10. DEPRECATE OBSOLETE INTERFACES 217

Known Uses

Perdita Stevens and Rob Pooley identify Deprecation as a common prac-
tice for managing evolving APIs in complex systems [SP98].

Rationale

Deprecation gives you a window of time to evaluate the impact of a
change.

218 CHAPTER 7. MIGRATION STRATEGIES

7.11. CONSERVE FAMILIARITY 219

7.11 Conserve Familiarity

Intent Avoid radical changes that may alienate users.

Problem

How do you accomplish a major overhaul of a legacy system without dis-
rupting the way users are used to getting their job done?

This problem is difficult because:

• The legacy system requires significant changes.

• The users are not happy with the legacy system, but they understand
it well.

Yet, solving this problem is feasible because:

• You can migrate incrementally to a new solution.

Solution

Introduce only a constant, relatively low number of changes between each
new release.

Tradeoffs

Pros

• Users do not have to change their work habits too much between
releases.

Difficulties

• Sometimes radical change is necessary. It can be hard to migrate
from a command-line interface to a GUI while conserving familiarity.

Rationale

Too much change between releases increases the risk of hidden defects,
and decreases the chance of user acceptance.

220 CHAPTER 7. MIGRATION STRATEGIES

Lehman and Belady’s “Law of Conservation of Familiarity” suggests
that the incremental change between releases of a system stays roughly
constant over time [LB85]. This is a relatively natural phenomenon be-
cause to do anything else introduces unnecessary risks.

Related Patterns

To Conserve Familiarity you must Migrate Systems Incrementally. In-
volve the Users to understand what changes will be acceptable. Prototype
the Target Solution to evaluate the potential impact of changes.

7.12. USE PROFILER BEFORE OPTIMIZING 221

7.12 Use Profiler Before Optimizing

Intent Avoid squandering reengineering effort on needless “optimizations” by
verifying where the bottlenecks are.

Problem

When should you rewrite a clearly inefficient piece of code?

This problem is difficult because:

• When you are reengineering software, you are likely to encounter
many naive algorithms in the legacy code.

• It can be hard to predict what will impact performance, and you can
lose a lot of time on pure supposition.

• Optimized code is often more complex than simple, naive code.

Yet, solving this problem is feasible because:

• There are tools to tell you where you may have a performance prob-
lem.

Solution

Whenever you are tempted to optimize a “clearly inefficient” part of the
system, first use a profiler to determine whether it is actually a bottleneck.

Don’t optimize anything unless your profiler tells you it will make a
difference.

If you decide to go ahead, prepare benchmarks that will demonstrate
the performance gains.

Tradeoffs

Pros

• You do not waste time optimizing something that will not make a
difference to overall performance.

Cons

• Naive algorithms will survive longer in the system.

222 CHAPTER 7. MIGRATION STRATEGIES

Rationale

The performance improvement that you can gain by optimizing a bit of
code depends on how much time the program, spends in that code in a
typical run. A profiler will tell you how much time that is.

“Do it, then do it right, then do it fast” is a well-known aphorism that
has been credited to many different sources. Very likely its origin is out-
side of the field of computer science. The rationale behind it is that you
risk making a system complex and hard to maintain if you become preoc-
cupied with performance issues too early. Instead, it is better to first find
a solution that works, then clean it up once you understand it. Finally, if
you can identify any important performance bottlenecks, that is the time
to optimize just those parts that will make a difference.

As a corollary, it may even be a good idea to replace a bit of complex,
“optimized” code by a simpler, “naive” solution, if that won’t severely
impact performance, but will make it easier to make other changes.

See also Davis’ discussion of “Use Profiler Before Optimizing” [Dav95].

Related Patterns

If you Refactor to Understand [p. 127], you will have started the second
step to “do it right."

Chapter 8

Detecting Duplicated Code

Fowler and Beck have ranked duplicated code as the first of the top ten
code smells indicating the need to refactor a piece of software [FBB+99].
As they like to explain it, whenever you duplicate a piece of code, you
are taking out a loan, in the sense that you are getting something now (an
almost ready-made piece of software) that you will have to pay for later.
There is nothing wrong with taking out a loan, but you have a choice be-
tween paying back a small amount now (by taking out the time to refactor
your code to eliminate the duplication) or paying back a lot later (in terms
of increased complexity and maintenance costs).

Data from empirical studies show that typically between 8% and 12%
of industrial software consists of duplicated code [DRD99]. Although this
may not seem like much, in fact it is difficult to achieve very high rates
of duplication. (Imagine what it would take to have a duplication rate of
even 50%!) Duplication rates of 15 to 20% are therefore considered to be
severe.

It is important to identify duplicated code for the following reasons:

• Duplicated code hampers the introduction of changes, since ev-
ery implemented variant of a piece of functionality will have to be
changed. Since it is easy to miss some variants, bugs are likely to
pop up in other places.

• Duplicated code replicates and scatters the logic of a system instead
of grouping it into identifiable artifacts (classes, methods, packages).
It leads to systems that are more difficult to understand and to
change. Instead of just having to understand relationship between
logical parts you will have first to identify them and then understand
their relationships.

223

224 CHAPTER 8. DETECTING DUPLICATED CODE

Duplicated code arises for a variety of reasons:

• Whenever a programmer is implementing a piece of functionality
that is remotely similar to something that has been done before, it is
natural to use the existing code as a model for the new task. If it is
a matter of recombining existing procedures, the task will be simple.
But if the behavior is more complex, the easiest thing to do is to copy,
paste and modify the old code to achieve the functionality. If both
the old and new pieces of code belong to different applications, the
harm is minimal. But if they are part of the same system, duplicated
code has now been introduced.

• Sometimes code is copied, pasted and modified between different
applications, or different versions of the same application. When
multiple versions must be maintained simultaneously, or when dif-
ferent applications or versions must be merged, you immediately
have a duplicated code problem.

From a reengineering perspective, usually people know whether or not
a system suffers from duplication. First, the development team, or the
manager will tell you. Second, there are normally some clear signs that
duplication has been practiced in a project: for example, two develop-
ers cannot develop four millions of line of code in less than eight months
without copying and pasting existing code. While analyzing the system
you will also identify duplicated code by accident. There is a major differ-
ence, however, between knowing that a system contains duplicated code,
and knowing exactly which parts have been duplicated.

Figure 8.1: Two patterns to support Detecting Duplicated Code.

225

Overview

Detecting Duplicated Code consists of two patterns: Compare Code Me-
chanically, which describes how we can detect duplicated code, and Visu-
alize Code as Dotplots, which shows how duplicated code can be better
understood by simple matrix visualization.

Once you have detected and understood duplication in the system, you
may decide on a variety of tactics. Various refactoring patterns, such as
Extract Method [p. 317] may help you to eliminate the duplication. Du-
plication may be a sign of misplaced responsibilities, in which you should
may decide to Move Behavior Close to Data [p. 243].

Complex conditional statements are also a form of duplication, and
may indicate that multiple clients have to duplicate actions that should
belong to the target class. The pattern cluster Transform Conditionals to
Polymorphism can help you to resolve these problems.

226 CHAPTER 8. DETECTING DUPLICATED CODE

8.1. COMPARE CODE MECHANICALLY 227

8.1 Compare Code Mechanically

Intent Discover duplicated code by comparing all the source code files line-by-
line.

Problem

How do you discover which parts of an application code have been dupli-
cated?

This problem is difficult because:

• You may suspect that code has been duplicated but you do not have
any a priori evidence where the duplication occurs. For example,
you know that two programmers cannot have developed 4 million
lines of Cobol in one year without having duplicated some code.

• Browsing the code is not an effective way of discovering duplication;
you will only find duplicated code by accident.

• Programmers may have not only copied and pasted code but also
modified variables or changed the shape of the programs.

Yet, solving this problem is feasible because:

• Most duplicated code can be detected by mechanical procedures.

Solution

Textually compare each line of the software source code with all the other
lines of code.

Steps

• Normalize the lines of code by removing comments, tabs and blanks.

• Remove lines that contain uninteresting code elements (e.g., just else
or })

• Compare each line with all the other lines. Reduce search complexity
by hashing:

– Preprocessing: Compute the hash value for each line
– Actual Comparison: Compare all lines in the same hash bucket

228 CHAPTER 8. DETECTING DUPLICATED CODE

Variants

This approach may fail to identify some instances of duplicated code due
to renaming of variables. By deleting all variable identifiers, or by map-
ping them to a common symbol, you can detect similar code patterns,
while abstracting from the details of the specific identifiers. This variant,
however, requires some syntactic processing of the code.

Tradeoffs

Pros

• The approach is simple and gives good results while only requiring
modest resources.

• It is nearly language-independent in the sense that you only have to
build a lexical analyzer and not a full parser. That’s why a simple
perl script can be sufficient depending on the level of sophistication
that you want.

• Simple statistics and percentage rates are easily computed and may
help you to gain credibility or more strength in discussions on re-
source allocation or hiring new people.

Cons

• Code that has been heavily edited after copying may be hard to iden-
tify as duplicated code.

• Systems containing a lot of duplicated code will generate a lot of data
that can be difficult to analyze effectively.

Example

Consider the case of a system written in C++ where you suspect dupli-
cated code. However, you didn’t write to code yourself so you don’t know
where the actual duplication occurs. How can you detect where the du-
plicated code fragments are? Consistent with Keep It Simple [p. 37] you
do the simplest thing that may possibly work: you write a little script that
first normalizes the code to remove all white space from the code and af-
terwards compares each line of code against itself.

The normalization would change the following code

8.1. COMPARE CODE MECHANICALLY 229

...
// assign same fastid as container
fastid = NULL;
const char* fidptr = getFastid();
if(fidptr != NULL) {

int l = strlen(fidptr);
fastid = new char[l+1];
char *tmp = (char*) fastid;
for (int i =0;i<l;i++)

tmp[i] = fidptr[i];
tmp[l] = '\0';

}
...

into

...
fastid=NULL;
constchar*fidptr=getFastid();
if(fidptr!=NULL)
intl=strlen(fidptr);
fastid=newchar[l+1];
char*tmp=(char*)fastid;
for(inti=0;i<l;i++)
tmp[i]=fidptr[i];
tmp[l]='\0';
...

Afterwards, the line-by-line comparison of the code against itself pro-
duces a report telling which sequences of lines are duplicated.

Lines:fastid=NULL;;constchar*fidptr=getFastid();;if(fidptr!=NULL);
intl=strlen(fidptr);;fastid=newchar[l+1];;
Locations:
</typesystem/Parser.C>6178/6179/6180/6181/6182
</typesystem/Parser.C>6198/6199/6200/6201/6202

Below is a sample of a perl script that will do the trick.

#! /usr/bin/env perl --w
duplocForCPP.pl -- detect duplicated lines of code (algorithm only)
Synopsis: duplocForCPP.pl filename ...
Takes code (or other) files and collects all line numbers of lines
equal to each other within these files. The algorithm is linear (in
space and time) to the number of lines in input.

Output: Lists of numbers of equal lines.

230 CHAPTER 8. DETECTING DUPLICATED CODE

Author: Matthias Rieger

$equivalenceClassMinimalSize = 1;
$slidingWindowSize = 5;
$removeKeywords = 0;

@keywords = qw(if
then
else
for
{
}

);

$keywordsRegExp = join '|', @keywords;

@unwantedLines = qw(else
return
return;
return result;
}else{
#else
#endif
{
}
;
};

);
push @unwantedLines, @keywords;

@unwantedLines{@unwantedLines} = (1) x @unwantedLines;

$totalLines = 0;
$emptyLines = 0;
$codeLines = 0;
@currentLines = ();
@currentLineNos = ();
%eqLines = ();
$inComment = 0;

$start = (times)[0];

while (<>) {
chomp;
$totalLines++;

remove comments of type /* */

8.1. COMPARE CODE MECHANICALLY 231

my $codeOnly = ";
while(($inComment && m|*/|) || (!$inComment && m|/*|)) {

unless($inComment) { $codeOnly .= $` }
$inComment = !$inComment;
$_ = $';

}
$codeOnly .= $_ unless $inComment;
$_ = $codeOnly;

s|//.*$||; # remove comments of type //
s/\s+//g; #remove white space
s/$keywordsRegExp//og if $removeKeywords; #remove keywords

remove empty and unwanted lines
if((!$_ && $emptyLines++)

|| (defined $unwantedLines{$_} && $codeLines++)) { next }

$codeLines++;
push @currentLines, $_;
push @currentLineNos, $.;
if($slidingWindowSize < @currentLines) {

shift @currentLines;
shift @currentLineNos;

}

print STDERR "Line $totalLines >$_<\n";

my $lineToBeCompared = join ", @currentLines;
my $lineNumbersCompared = "<$ARGV>"; # append the name of the

file
$lineNumbersCompared .= join '/', @currentLineNos;
print STDERR "$lineNumbersCompared\n";
if($bucketRef = $eqLines{$lineToBeCompared}) {

push @$bucketRef, $lineNumbersCompared;
} else {

$eqLines{$lineToBeCompared} = [$lineNumbersCompared];
}

if(eof) { close ARGV } # Reset linenumber--count for next file
}

$end = (times)[0];
$processingTime = $end -- $start;

print the equivalence classes

$numOfMarkedEquivClasses = 0;

232 CHAPTER 8. DETECTING DUPLICATED CODE

$numOfMarkedElements = 0;
foreach $line (sort { length $a <=> length $b } keys %eqLines) {

if(scalar @{$eqLines{$line}} > $equivalenceClassMinimalSize) {
$numOfMarkedEquivClasses++;
$numOfMarkedElements += scalar @{$eqLines{$line}};
print "Lines: $line\n";
print "Locations: @{$eqLines{$line}}\n\n";

}
}

print "\n\n\n";
print "Number of Lines processed: $totalLines\n";
print "Number of Empty Lines: $emptyLines\n";
print "Number of Code Lines: $codeLines\n";
print "Scanning time in seconds: $processingTime\n";
print "Lines per second: @{[$totalLines/$processingTime]}\n";
print "--\n";
print "Total Number of equivalence classes: @{[scalar keys %eqLines]}\n

";
print "Size of Sliding window: $slidingWindowSize\n";
print "Lower bound of eqiv--class Size: $equivalenceClassMinimalSize\n";
print "Number of marked equivalence classes:

$numOfMarkedEquivClasses\n";
print "Number of marked elements: $numOfMarkedElements\n";

Known Uses

In the context of software reengineering, the pattern has been applied to
detect duplicated code in FAMOOS case studies containing up to one mil-
lion lines of C++. It also has been applied to detect duplicated code in a
COBOL system of 4 million lines of code. DATRIX has investigated mul-
tiple versions of a large telecommunications system, wading through 89
million lines of code all in all [LPM+97].

8.2. VISUALIZE CODE AS DOTPLOTS 233

8.2 Visualize Code as Dotplots

Intent Gain insight into the nature of the duplication by studying the patterns
in the dotplots.

Problem

How can you gain insight into the scope and nature of code duplication in
a software system?

This problem is difficult because:

• Just knowing where in the system duplicated code exists does not
necessarily help you to understand its nature, or what should be
done about it.

Yet, solving this problem is feasible because:

• A picture is worth a thousand words.

Solution

Visualize the code as a matrix in which the two axes represent two source
code files (possibly the same file), and dots in the matrix occur where
source code lines are duplicated.

Steps

If you want to analyze two files A and B:

• Normalize the contents of the two files to eliminate noise (white
space etc.).

• Let each axis of the matrix represent elements (e.g., the lines of code)
of the normalized files.

• Represent a match between two elements as a dot in the matrix.

• Interpret the obtained pictures: a diagonal represents duplicated
code between the two files.

To analyze the duplication inside a single file, plot the elements of that
file on both axes.

234 CHAPTER 8. DETECTING DUPLICATED CODE

Exact Copies Copies with Inserts/Deletes Repetitive
Variations Code Elements

abcdefabxyefabcdefabcdef abcdeabxycde axbcxdexfgxh

fe
d
c
b
a
fe

d
c
b
a

fe
y
x
b
a
fe

d
c
b
a

e
d
c
y
x
b
a
e
d

c
b
a

h
x
g
fx

e
d
x
c
b
x
a

Figure 8.2: Possible sequences of dot and their associated interpretations.

Interpretations

The interpretation of the obtained matrices are illustrated in Figure 8.2:

Some interesting configurations formed by the dots in the matrices are
the following:

• Exact Copies: diagonals of dots indicate copied sequences of source
code.

• Copies With Variations: sequences that have holes in them indicate
that a portion of a copied sequences has been changed.

• Inserts/Deletes: broken sequences with parts shifted to the right or
left indicate that a portion of code has been inserted or deleted.

• Repetitive Code Elements: rectangular configurations indicate periodic
occurrences of the same code. An example is the break at the end of
the individual cases of a C or C ++ switch statement, or recurring
preprocessor commands like #ifdef SOME CONDITION.

Tradeoffs

Pros

• The approach is largely language-independent, since only the code
normalization depends on the language syntax.

• The approach works well when reverse engineering large amounts
of unknown code, because the dotplots attract your eye to certain
parts of the code to be studied more closely.

• The idea is simple yet works surprisingly well. A simple version of
the approach can be implemented by a good programmer using a

8.2. VISUALIZE CODE AS DOTPLOTS 235

Before After

Before

After

Figure 8.3: Code duplication before and after refactoring.

appropriate tools in a couple of days. (One of our better students
made a small dotplot browser in Delphi in two days.)

Cons

• Dotplots only present pairwise comparisons. They do not necessar-
ily help you identify all instances of duplicated elements in the entire
software system. Although the approach can easily be extended to
present multiple files across each axis, the comparisons are still only
pairwise.

Difficulties

• A naive implementation of a dotplot visualizer may not scale well
to large systems. Tuning and optimizing the approach for large data
sets can compromise the simplicity of the approach.

• The interpretation of the data may be more subtle than it appears
at first glance. Indeed, while comparing multiple files the diagonals

236 CHAPTER 8. DETECTING DUPLICATED CODE

represent more duplication than is really in the system because we
are comparing duplicated fragments with themselves over different
files, as shown by Figure 8.3 and Figure 8.4.

• The screen size limits the amount of information that can be visual-
ized. Some success has been achieved with so-called “mural” visu-
alization approaches [JS96]. However, these techniques are signifi-
cantly more difficult to implement than simple dotplots and are not
worth the extra effort.

Example

In Figure 8.3 we see a dotplot of two versions of a piece of software, before
and after the duplication has been removed. The first version is compared
to itself in the top left square. The line down the diagonal simply shows us
that every line of code is being compared to itself. What is more interesting
is that several other diagonal lines occur in the dotplot, which means that
code has been duplicated within this file. A second version of the same file
is compared to itself in the lower right square. Here we see no significant
duplication aside from the main diagonal, which reflects the fact that all
the duplicated code has been successfully refactored.

A B

A

Figure 8.4: A Python file A being compared to itself and to a second file B.

The bottom left and top right squares are mirror images of each other.
They tell us how the before and after files have been reorganized. Since
there is no strong diagonal, this tells us that significant reorganization has
taken place. The diagonal stripes show us which parts of the old version
have survived and where they appear in the new version. From the dot-

8.2. VISUALIZE CODE AS DOTPLOTS 237

Figure 8.5: Dotplots produced by four switch statements.

plot alone, we can guess that about half of the code has survived, and
another half of the code has been significantly rewritten.

Dotplots are also useful to detect duplication across multiple files. Fig-
ure 8.4 shows a dotplot comparing two Python files. The comparison of A
vs. A shows that there is essentially no internal duplication. Very likely
there are some switch statements in the bottom have of the file, indicated
by the matrix pattern.

When we compare file A to file B, however, we detect a staggering
amount of duplication. It looks very much like file B is just a copy of file
A that has been extended in various ways. Closer investigation showed
this to be the case. In fact, file A was just an older version of file B that had
inadvertently been left in the release.

Dotplots can also be useful to detect other problems. Figure 8.5
presents four clones that represent a switch statement over a type vari-
able that is used to call individual construction code. The duplicated code
could perhaps be eliminated by applying Transform Conditionals to Poly-
morphism.

238 CHAPTER 8. DETECTING DUPLICATED CODE

Known Uses

The pattern has been applied in biological research to detect DNA se-
quences [PK82]. The Dotplot tool [Hel95] has been used to detect simi-
larities in manual pages, literary texts and names from file systems. In the
FAMOOS project, the pattern has been applied to build Duploc, a tool for
identifying duplication in software source code [DRD99]. The Dup tool
[Bak92] has been used to investigated the source code of the X-Window
system and uses a dotplot matrix graphical representation.

Related Patterns

Once you have detected duplicated code, numerous refactoring patterns
may apply, in particular Extract Method [p. 317].

Very often duplicated code arises because clients assume too many re-
sponsibilities. In that case, Move Behavior Close to Data [p. 243] will help
you to eliminate the duplication.

Dotplots also help to detect large conditional constructs. You should
probably Transform Conditionals to Polymorphism to eliminate these con-
ditionals and thereby achieve a more flexible design.

Chapter 9

Redistribute
Responsibilities

You are responsible for reengineering the information system that man-
ages all employee records for a large public administration. Due to recent
political upheavals, you know that there will be many changes required in
the system to cope with privatization, new laws, and new regulations, but
you do not know exactly what they will be. The existing system consists of
a nominally object-oriented reimplementation of an older procedural sys-
tem. The code contains many pseudo-objects: data containers masquerad-
ing as objects, and big, procedural “god classes” that implement most of
a the logic of individual subsystems. One class, called TaxRevision2000,
has a single method consisting essentially of a case statement that is 3000
lines long.

As long as the system was relatively stable, this design posed no par-
ticular problems, but now you see that even relatively modest changes to
system require months of planning, testing and debugging due to weak
encapsulation of data. You are convinced that migrating to a more object-
oriented design will make the system more robust and easier to adapt
to future requirements. But how do you know where the problems lie?
Which responsibilities should be redistributed? Which data containers
should you redesign, which ones should you wrap, and which ones are
better left alone?

239

240 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

Forces

• Data containers (objects that just provide access to data, but no own
behavior) are a simple and convenient way to share information be-
tween many subsystems. Among others, data containers are the eas-
iest way to provide access to database entities.

• However, data containers expose the data representation, hence are
difficult to change when many application components depend on
them. Consequently, a proliferation of data containers leads to fragile nav-
igation code in the implementation of business logic.

• It is hard to teach an old dog new tricks. Many designers received
a training in functional decomposition and will use the same habits
when doing an object design.

• However, functional decomposition tends to generate god classes,
i.e., big classes that do all of the work and have a myriad of tiny
provider classes around of it. God classes are hard to extend, mod-
ify or subclass because such changes affect large numbers of other
methods or instance variables.

Overview

This cluster deals with problems of misplaced responsibilities. The two
extreme cases are data containers, classes that are nothing but glorified data
structures and have almost no identifiable responsibilities, and god classes,
procedural monsters that assume too many responsibilities.

Although there are sometimes borderlines cases where data containers
and god classes may be tolerated, particularly if they are buried in a stable
part of the system which will not change, generally they are a sign of a
fragile design.

Data containers lead to violations of the Law of Demeter (LOD) [LHR88].
In a nutshell, the Law of Demeter provides a number of design guidelines
to reduce coupling between distantly-related classes. Although the Law
of Demeter has various forms, depending on whether one focusses on ob-
jects or classes, and depending on which programming language is being
used, the law essentially states that methods should only send messages to
instance variables, method arguments, self, super, and the receiver class.

Violations of the Law of Demeter typically take the form of navigation
code in which an indirect client accesses an indirect provider by accessing ei-
ther an instance variable or an acquaintance of an intermediate provider. The
indirect client and provider are thereby unnecessarily coupled, making fu-
ture enhancements more difficult to realize (Figure 9.2). The intermediate

241

provider may take the form of a data container or opens its encapsula-
tion by providing accessor methods. Designs with many data contain-
ers present often suffer from complex navigation code in which indirect
clients may have to navigate through a chain of intermediates to reach the
indirect provider.

Figure 9.1: An indirect client violates the Law of Demeter by navigating
through an intermediate provider to an indirect provider, unnecessarily
coupling the two.

Whereas data containers have too few responsibilities, god classes as-
sume too many. A god class can be a single class that implements an entire
subsystem, consisting of thousands of lines of code and hundreds of meth-
ods and instance variables. Particularly vicious god classes consist of only
static instance variables and methods, i.e., all data and behavior have class
scope, and the god class is never instantiated. Such god classes are purely
procedural beasts, and are object-oriented in name only.

Occasionally some procedural classes known as utility classes are con-
venient. The best known examples are object-oriented interfaces to math
libraries, or collections of algorithms. Real god classes, however, are not
libraries, but complete applications or subsystems that controls the entire
application execution.

God classes and data containers often occur together, with the god
class assuming all the control of the application, and treating other classes
as glorified data structures. Since they assume too many responsibilities,
god classes are hard to understand and maintain. Incremental modifica-
tion and extension of a god class through inheritance is next to impossible
due to the complexity of its interface and the absence of clear subclassing
contract.

This cluster provides a number of patterns to eliminate data containers
and god classes by redistributing responsibilities and thereby improving
encapsulation.

• Move Behavior Close to Data [p. 243] moves behavior defined in

242 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

Figure 9.2: Data containers are the clearest sign of misplaced responsibili-
ties. These three patterns redistribute responsibilities by moving behavior
close to data.

indirect clients to an intermediate data container to make it more
“object-like”. This pattern not only decouples indirect clients from
the contents of the data container, but also typically eliminates du-
plicated code occurring in multiple clients of the data container.

• Eliminate Navigation Code [p. 253] is technically very similar to
Move Behavior Close to Data in terms of the reengineering steps,
but is rather different in its intent. This pattern focusses on redis-
tributing responsibilities down chains of data containers to eliminate
navigation code.

• Split Up God Class [p. 263] refactors a procedural god class into a
number of simple, more cohesive classes by moving all data to exter-
nal data containers, applying Move Behavior Close to Data to pro-
mote the data containers to objects, and finally removing or depre-
cating the facade that remains.

9.1. MOVE BEHAVIOR CLOSE TO DATA 243

9.1 Move Behavior Close to Data

Intent Strengthen encapsulation by moving behavior from indirect clients to
the class containing the data it operates on.

Problem

How do you transform a class from being a mere data container into a real
service provider?

This problem is difficult because:

• Data containers offer only accessor methods or public instance vari-
ables, and not real behavior, forcing clients to define the behavior
themselves instead of just using it. New clients typically have to
reimplement this behavior.

• If the internal representation of a data container changes, many
clients have to be updated.

• Data containers cannot be used polymorphically since they define
no behavior and their interfaces consist mainly of accessor methods.
As a consequence, clients will be responsible for deciding which be-
havior is called for in any given context.

Yet, solving this problem is feasible because:

• You know what operations clients perform with the data.

Solution

Move behavior defined by indirect clients to the container of the data on
which it operates.

Detection

Look for:

• Data containers, i.e., classes defining mostly public accessor methods
and few behavior methods (i.e., the number of methods is approxi-
mately 2 times larger than the number of attributes.

244 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

Figure 9.3: Classes that were mere data containers are transformed into
real service providers.

• Duplicated client code that manipulates data of separate provider
classes. If multiple clients implement different behavior, consider in-
stead applying Transform Client Type Checks [p. 281].

• Methods in client classes that invoke a sequence of accessor methods
(see Eliminate Navigation Code).

Steps

Move Behavior Close to Data makes use of the refactorings Extract Method
[p. 317] and Move Method [p. 317], since the behavior in question will have
to be extracted from a client method and then moved to a provider class.

1. Identify the client behavior that you want to move, i.e., the complete
method or a part of a method that accesses provider data.

• Look for the invocations of the accessor methods of the data
container.

• Look for duplicated code in multiple clients that access the
same provider data.

2. Create the corresponding method in the provider class, if it does not al-
ready exist. Be sure to check that moving the code will not introduce

9.1. MOVE BEHAVIOR CLOSE TO DATA 245

any naming conflicts. Tools like the Refactoring Browser [RBJ97] au-
tomate these steps:

• If the extracted functionality is a complete method with argu-
ments, check that the arguments do not conflict with attributes
of the provider class. If so, rename the arguments.

• If the extracted functionality uses temporary variables, check
that the local variables do not conflict with attributes or vari-
ables in the target scope. If so, rename the temporary variables.

• Check if the extracted functionality accesses local variables of
the client classes (attributes, temporary variables,...), if so, add
arguments to the method to represent these client variables.

3. Give an intention-revealing name to the new method. Among others, in-
tention revealing names do not contain references to the class they
belong to, because this makes the method less reusable. For instance,
instead of defining a method addToSet() on a class Set, it is better to
name it simply add(). Similarly, it is not such a good idea to define
a method binarySearch() on a class Array, because the method name
implies a sorted random access collection, while the name search()
does not have such implications.

4. In the client invoke the new provider method with the correct parame-
ters.

5. Clean up the client code. In the case the moved functionality was a
complete method of the client class:

• check all the methods that invoke the old, moved method and
ensure that they now call the new provider method instead, and

• remove the old method from the client or deprecate it. (Depre-
cate Obsolete Interfaces [p. 215]).

It may be the case that the calling methods defined on the same object
have to be also moved to the provider. In such a case repeat the steps
for the methods.

6. Repeat for multiple clients. Note that duplicated code in multiple
clients will be removed in step 2, since there is no need to move
code that has already been transferred to the provider. In case many
similar, but not identical methods are introduced to the provider,
consider factoring out the duplicated fragments as protected helper
methods.

246 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

Tradeoffs

Pros

• Data containers are converted to service providers with clear respon-
sibilities.

• The service providers become more useful to other clients.

• Clients are no longer responsible for implementing provider behav-
ior.

• Clients are less sensitive to internal changes of the provider.

• Code duplication in the system decreases.

Cons

• If the moved behavior also accesses client data, turning these ac-
cesses into parameters will make the interface of the provider more
complex and introduce explicit dependencies from the provider to
the client.

Difficulties

• It may not be clear whether client code really should be moved to the
data provider. Some classes like Stream or Set are really designed as
data providers. Consider moving the code to the provider if:

– the functionality represents a responsibility of the provider. For
example, a class Set should provide mathematical operations
like union and intersection. On the other hand, a generic Set
should not be responsible for operations on sets of Employees.

– the functionality accesses the attributes of the provider,
– the functionality is defined by multiple clients.

• If the provider is really designed as a data container, consider defin-
ing a new provider class that wraps an instance of the data provider
and holds the associated behavior. For example, an EmployeeSet
might wrap a Set instance and provide a more suitable interface.

When the legacy solution is the solution

Data containers may have been automatically generated from a database
schema to provide an object interface to an existing database. It is almost

9.1. MOVE BEHAVIOR CLOSE TO DATA 247

always a bad idea to modify generated classes, since you will lose your
changes if the code ever needs to be regenerated. In this case, you may
decide to implement wrapper classes to hold the behavior that should be
associated with the generated classes. Such a wrapper would function as
an Adapter [p. 319] that converts the generated data container to a real
service provider.

Sometimes you know that a class defined in a library is missing crucial
functionality. For example, an operation convertToCapitals that is missing
for class String. In such a case it is typically impossible to add code to the
library, so you may have to define it in client class. In C++ for example, it
may be the only way to avoid recompilation or to extend a class when the
code is not available [ABW98] (p. 378). In Smalltalk you have the possi-
bility to extend or modify the library, however you should pay particular
attention to separate the additional code so you can easily merge it with
future releases of the library, and quickly detect any conflicts.

The intent of the Visitor [p. 322] design pattern states: “Represent an
operation to be performed on the elements of an object structure in a class separate
from the elements themselves. Visitor lets you define a new operation without
changing the classes of the elements on which it operates” [GHJV95]. The Visitor
pattern is one of the few cases where you want to have classes access the
data of a separate provider class. Visitor allows one to dynamically add
new operations to a set of stable classes without having to change them.

Configuration classes are classes that represent the configuration of a sys-
tem (e.g., global parameters, language dependent representation, policies
in place). For example, in a graphic tool the default size of the boxes,
edges, width of the lines can be stored in a such class and other classes
refer to it when needed.

Mapping classes are classes used to represent mappings between objects
and their user interface or database representation. For example, a soft-
ware metric tool should graphically represent the available metrics in a
widget-list so that the user can select the metrics to be computed. In such
a case the graphical representation of the different metrics will certainly
differ from their internal representation. A mapping class keeps track of
the association.

Example

One of the recurring complaints of the customers is that it takes too much
time to change the reports generated by the information system. By talking
to the maintainers you learn that they find generating the reports quite
boring. “Its’s always the same code you have to write,” says Chris, one

248 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

Figure 9.4: The Payroll and Telephone classes access the internal represen-
tation of the class Employee to print a representation.

of the maintainers. “You fetch a record out of the database, print its fields
and then proceed to the next record.”

You strongly suspect a case of data-containers and a closer examination
of the code confirms your suspicion. Almost all of the classes interfacing
with the database contain accessor methods only, and the programs gen-
erating reports are forced to use these accessors. One striking example
is the case of the Payroll application, which has lots in common with the
TelephoneGuide application and you decide to try to move the common
functionality to the Employee class.

Before

As shown in Figure 9.4, both the Payroll and TelephoneGuide classes print
labels, treating Employee instances as data containers. Thus, Payroll and
TelephoneGuide are indirect clients of the attributes of Employee, and de-
fine printing code that should have been provided by the Employee class.
The following code show how this would look like in Java.

public class Employee {
public String[] telephoneNumbers = {};
...
public String name() {

return name;}

public String address() {
return address;}

}

public class Payroll {

9.1. MOVE BEHAVIOR CLOSE TO DATA 249

public static Employee currentEmployee;

public static void printEmployeeLabel () {
System.out.println(currentEmployee.name());
System.out.println(currentEmployee.address());
for (int i=0; i < currentEmployee.telephoneNumbers.length; i++) {

System.out.print(currentEmployee.telephoneNumbers[i]);
System.out.print(" ");}

System.out.println("");}
...
}

public class TelephoneGuide {

public static void printEmployeeTelephones (Employee emp) {
System.out.println(emp.name());
System.out.println(emp.address());
for (int i=0; i < emp.telephoneNumbers.length -- 1; i++) {

System.out.print(emp.telephoneNumbers[i]);
System.out.print(" ---- ");}

System.out.print(emp.telephoneNumbers[
emp.telephoneNumbers.length -- 1]);

System.out.println("");}
...

}

Note that although both print methods implement essentially the same
functionality, there are some slight differences. Among others, Tele-
phoneGuide.printEmployeeTelephones uses a different separator while
printing out the telephone numbers.

Steps

The different separators can easily be dealt with by defining a spe-
cial parameter representing the separator to be used. Thus Tele-
phoneGuide.printEmployeeTelephones gets rewritten as follows.

public static void printEmployeeTelephones
(Employee emp, String separator) {

...
for (int i=0; ...

System.out.print(separator);}
...}

...

250 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

Next, move the printEmployeeTelephones method from Tele-
phoneGuide to Employee. Thus, copy the code and replace all references
to the emp parameter with a direct reference to the attributes and meth-
ods. Also, ensure that the new method has an intention revealing name,
thus omit the Employee part from the method name, resulting in a method
printLabel.

public class Employee {
...
public void printLabel (String separator) {

System.out.println(name);
System.out.println(address);
for (int i=0; i < telephoneNumbers.length -- 1; i++) {

System.out.print(telephoneNumbers[i]);
System.out.print(separator);

}
System.out.print(telephoneNumbers[telephoneNumbers.length -- 1]);
System.out.println("");

}

Then replace the method bodies of Payroll.printEmployeeLabel and
TelephoneGuide.printEmployeeTelephones with a simple invocation of
the Employee.printLabel method.

public class Payroll {
...
public static void printEmployeeLabel () {

currentEmployee.printLabel(" ");
...}

public class TelephoneGuide {
...
public static void printEmployeeTelephones (Employee emp) {

emp.printLabel(" ---- ");}
...}

Finally, verify which other methods refer to the name(), address() and
telephoneNumbers. If no such methods exist, consider to declare those
methods and attributes as private.

After

After applying Move Behavior Close to Data the class Employee now pro-
vides a printLabel method which takes one argument to represent the dif-
ferent separators (see Figure 9.5). This is a better situation because now

9.1. MOVE BEHAVIOR CLOSE TO DATA 251

Figure 9.5: The Payroll class uses the public interface of the class Employee
to print a representation of Employee; data accessors became private.

clients do not rely on the internal representation of Employee. Moreover,
by moving the behavior near the data it operates, the class represents a
conceptual entity with an emphasis on the services it provides instead of
structure it implements.

Rationale

Keep related data and behavior in one place.
— Arthur Riel, Heuristic 2.9 [Rie96]

Data containers impede evolution because they expose structure and
force clients to define their behavior rather than sharing it. By promoting
data containers to service providers, you reduce coupling between classes
and improve cohesion of data and behavior.

Related Patterns

Encapsulate Field [p. 317] offers heuristics that help determine where
methods should be defined during a design phase. The text offers ratio-
nale for applying Move Behavior Close to Data.

252 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

9.2. ELIMINATE NAVIGATION CODE 253

9.2 Eliminate Navigation Code

Also Known As: Law of Demeter [LHR88]

Intent Reduce the impact of changes by shifting responsibility down a chain of
connected classes.

Problem

How do you reduce coupling due to classes that navigate through the ob-
ject graph?

This problem is difficult because:

• Changes in the interfaces of a class will affect not only direct clients,
but also all the indirect clients that navigate to reach it.

Yet, solving this problem is feasible because:

• Navigation code is typically a sign of misplaced responsibilities and
violation of encapsulation.

Solution

Iteratively move behavior defined by an indirect client to the container of
the data on which it operates.

Note that actual reengineering steps are basically the same as those
of Move Behavior Close to Data, but the manifestation of the problem is
rather different, so different detection steps apply.

Detection

Look for indirect providers:

• Each time a class changes, e.g., by modifying its internal representa-
tion or collaborators, not only its direct but also indirect client classes
have to be changed.

• Look for classes that contain a lot public attributes, accessor methods
or methods returning as value attributes of the class.

254 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

• Big aggregation hierarchies containing mostly data classes often play
the role of indirect provider.

Look for indirect clients that contain a lot of navigation code. Navigation
code is of two kinds:

• a sequence of attribute accesses, e.g.,a.b.c.d where b is an attribute of
a, c is an attribute of b and d an attribute of c. The result of such a
sequence can be assigned to variable or a method of the last object
can be invoked, e.g.,a.b.c.d.op(). Such a sequence navigation does
not occur in Smalltalk where all the attributes are protected.

• a sequence of accessor method calls. In Java and C++ such a sequence
has the form object.m1().m2().m3() where object is an expression re-
turning an object, m1 is a method of object, m2 a method of the object
returned by the invocation of m1, m3 a method of the object returned
by the invocation of m2 and so on. In Smalltalk navigation code has
the following form receiver m1 m2 ... mn The same navigation code
sequence is repeated in different methods on the same or different
clients.

Navigation code can be detected by simple pattern matching. How-
ever, to really detect a method call navigation sequence leading to cou-
pled classes, you should filter out sequences of calls converting one object
to another one. For example, the following two Java expressions are not
problematic because they deal with object conversion.

leftSide().toString()
i.getValue().isShort()

To deal with this case you can:

• look for more than two calls, or

• eliminate from consideration known object conversion calls, includ-
ing standard method invocations for converting to and from primi-
tive types.

The use of additional variables, can sometimes disguise navigation
code, so reading the code is often necessary. For instance, the following
Java code does not contain a chain of invocations.

Token token;
token = parseTree.token();
if (token.identifier() != null) {

...

9.2. ELIMINATE NAVIGATION CODE 255

However, it is equivalent to the following code, which does contain a
chain of invocations

if (parseTree.token().identifier() != null) {
...

Smalltalk. Simply searching for sequences of calls in Smalltalk code can
create a lot of noise because Smalltalk does not have predefined control
structures but uses messages even for implementing control structures.
The above example with the disguised navigation code would read as fol-
lows in Smalltalk. (Note the messages isNil and ifFalse:[...])

| token |
token := parseTree token.
token identifier isNil ifFalse:[...]

The equivalent version with navigation code becomes.

parseTree token identifier isNil ifFalse: [...]

The following code segments contain a sequence of invocations but do
not pose any problems because the first deals with boolean testing and the
second with conversion (abuse of conversion, in fact).

(a isNode) & (a isAbstract) ifTrue: [...]
aCol asSet asSortedCollection asOrderedCollection

Java. For Java or C++, primitives data types and control structures are
not implemented using objects, so simple pattern matching produces less
noise. For example, a simple Unix command like:

egrep '.*\(\).*\(\).*\(\).' *.java
egrep '.*\..*\..*\..' *.java

identifies lines of code like the following ones, which are examples of navi-
gation code coupling between classes, and filters out the conversions men-
tioned above.

a.getAbstraction().getIdentifier().traverse(this)
a.abstraction.identifier.traverse(this)

More sophisticated matching expressions can reduce the noise pro-
duced by the parentheses of casts or other combinations.

AST Matching. If you have a way to express tree matching, you can detect
navigation code. For example, the Rewrite Rule Editor that comes with the
Refactoring Browser [RBJ97] can detect navigation code using the pattern

256 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

Carburetor

+fuelValveOpen: Boolean

Car

-engine

+increaseSpeed

Engine

+carburetor: Carburetor

...

engine.carburetor.fuelValveOpen = true;

...

...

engine.speedUp()

...

Carburetor

+fuelValveOpen: Boolean

Car

-engine

+increaseSpeed

Engine

-carburetor: Carburetor

+speedUp()

...

engine.speedUp()

...

Carburetor

-fuelValveOpen: Boolean

+openFuelValve()

Car

-engine

+increaseSpeed

Engine

-carburetor: Carburetor

+speedUp()

fuelValveOpen = true;

carburetor.fuelValveOpen = true;

carburetor.openFuelValve()

Figure 9.6: Chains of data containers can be converted into service
providers, thereby eliminating navigation code and reducing coupling be-
tween classes.

’@object ’mess1 ’mess2 ’mess3. To narrow the analysis of the results
you should only consider messages that belong to the domain objects and
eliminate all the method selectors of libraries objects like (isNil, not, class,
...).

Steps

The recipe for eliminating navigation code is to recursively Move Behavior
Close to Data. Figure 9.6 illustrates the transformation.

1. Identify the navigation code to move.

2. Apply Move Behavior Close to Data to remove one level of naviga-
tion. (At this point your regression tests should run.)

3. Repeat, if necessary.

Caution. It is important to note that the refactoring process relies on push-
ing code from the clients to the providers. In the example, from Car to Engine
and from Engine to Carburetor. A common mistake is to try to eliminate

9.2. ELIMINATE NAVIGATION CODE 257

navigation code by defining accessors at the client class level that access
the attributes of the provider attribute values, e.g., defining an accessor
getCarburetor in the class Car. Instead of reducing coupling between the
classes, it just increases the number of public accessors and makes the sys-
tem more complex.

Tradeoffs

Pros

• Chains of dependencies between classes are eliminated, so changes
in classes at the lowest level will impact fewer clients.

• Functionality that was implicit in the system is now named and ex-
plicitly available to new clients.

Cons

• The systematic application of Eliminate Navigation Code may lead
to large interfaces. In particular, if a class defines many instance
variables that are collections, then Eliminate Navigation Code would
force you to define a large number of additional methods to shield
the underlying collections.

Difficulties

• Deciding when to apply Eliminate Navigation Code can be difficult.
Defining methods that merely delegate requests to class collabora-
tors may not always be the solution. It may happen that giving away
internal information can reduce the interface of a class. For example,
if a class implements some well-defined behaviors but also serves
as a Facade [p. 319] to other collaborators, it may be simpler to give
access to the collaborator directly to reduce the interface of the class.

When the legacy solution is the solution

Navigation code may be the best solution when objects are graphically
presented or mapped to a database. In such cases the goal is to really ex-
pose and mimic the structural relationships between classes. Eliminating
navigation code will be a futile exercise.

258 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

* *
Reports

currentDepartment

countHandledFiles()

Department

+ employees

File

description()

fileID()

handled()
int nrHandled = 0, nrUnhandled = 0;

for (int i=0; i < department.employees.length; i++) {

for (int j=0; j < department.employees[i].files.length; j++) {

if (department.employees[i].files[j].handled()) {

nrHandled++;}

else {

nrUnhandled++;}}}

Employee

+ files

* *
Reports

currentDepartment

countHandledFiles()

Department

- employees

countHandledFiles()

File

description()

fileID()

handled()

Employee

- files

countHandledFiles()

for (int i=0; i < this.employees.length; i++) {

this.employees[i].countHandledFiles(nrHandled, nrUnhandled);

for (int j=0; j < this.files.length; j++) {

if (this.files[j].handled()) {

nrHandled.increment();}

else {

nrUnhandled.increment();}}

department.countHandledFiles(

nrHandled, nrUnhandled);

Figure 9.7: How to remove the unnecessary dependencies between the
Reports class and the File and Employee Classes.

It is sometimes necessary for a client to talk with its indirect providers.
This is true when direct providers play the role of an object server that re-
turns certain objects given certain properties (OOID, keys...). In this situa-
tion the client calls the object server (a direct provider) that returns objects
(indirect providers) to which the client sends messages.

Example

After having modified the Employee, Payroll and TelephoneGuide classes,
you noticed that it took 1/2 an hour to rebuild the whole project. Next
time you see Chris (one of the maintainers) you ask him why this build
took so long. “You probably changed the Employee class” he answers,
“we don’t dare to touch that class anymore since so many classes depend
on it”.

You decide to examine this Employee class in further detail and find
many unnecessary dependencies. For instance (as shown in Figure 9.7)
there is a class Reports, implementing one method countHandledFiles,

9.2. ELIMINATE NAVIGATION CODE 259

which counts for each Department the number of files that are handled by
all of its employees. Unfortunately, there is no direct relationship between
Department and File and consequently the ReportHandledFiles must nav-
igate over a department’s employees to enumerate all the files and access
the handled() status.

The Java code below shows the situation before and after applying
Eliminate Navigation Code. The bold textual elements highlight problems
and the solutions in the before and after situation.

Before

public class Reports {
...

public static void countHandledFiles(Department department) {
int nrHandled = 0, nrUnhandled = 0;

for (int i=0; i < department.employees.length; i++) {
for (int j=0; j < department.employees[i].files.length; j++) {

if (department.employees[i].files[j].handled()) {
nrHandled++;}

else {
nrUnhandled++;}}}

...}

The method countHandledFiles counts the number of handled files, by
asking the current department its employees and for each of these files.
The classes Department and Employee have to declare those attributes
public. With this implementation, two problems occur:

1. The Reports class must know how to enumerate the associations be-
tween Department, Employee and File, and this information must be
accessible in the public interface of each of the classes. If one of these
public interfaces change, then this change will affect all associated
classes.

2. The method countHandledFiles is implemented by directly accessing
the variables employees and files. This unnecessarily couples the
class Reports and the classes Department and Employee. If the class
Department or Employee change the data-structure used to gold the
associated objects, then all the methods in class Reports will have to
be adapted.

260 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

Steps

The solution is to extract the nested for loops as separate methods and
move them on the appropriate classes. This is actually a two step process.

First extract the outer for loop from Reports.countHandledFiles as a
separate method (name it countHandledFiles as well) and move it to the
class Department.

public class Department {
...

public void countHandledFiles
(Counter nrHandled, Counter nrUnhandled) {

for (int i=0; i < this.employees.length; i++) {
for (int j=0; j < this.employees[i].files.length; j++) {

if (this.employees[i].files[j].handled()) {
nrHandled.increment();}

else {
nrUnhandled.increment();}}}}

...}

public class Reports {
...

private static void countHandledFiles(Department department) {
Counter nrHandled = new Counter (0), nrUnhandled = new Counter
(0);
department.countHandledFiles(nrHandled, nrUnhandled);

...}

Next, extract the inner for loop from Department.countHandledFiles
(also named countHandledFiles) and move it to the class Employee.

public class Employee {
...

public void countHandledFiles
(Counter nrHandled, Counter nrUnhandled) {

for (int j=0; j < this.files.length; j++) {
if (this.files[j].handled()) {

nrHandled.increment();}
else {

nrUnhandled.increment();}}}
...}

public class Department {
...

public void countHandledFiles
(Counter nrHandled, Counter nrUnhandled) {

for (int i=0; i < this.employees.length; i++) {

9.2. ELIMINATE NAVIGATION CODE 261

this.employees[i].countHandledFiles(nrHandled, nrUnhandled);}}
...}

If all direct accesses to the employees and files variables are removed,
these attributes can be declared private.

Rationale

A method “M” of an object “O” should invoke only the methods of
the following kinds of objects.

1. itself

2. its parameters

3. any object it creates/instantiates

4. its direct component objects

— Law of Demeter

Navigation code is a well-known symptom of misplaced behavior
[LK94] [Sha97] [Rie96] that violates the Law of Demeter [LHR88]. It
leads to unnecessary dependencies between classes and as a consequence
changing the representation of a class requires all clients to be adapted.

Related Patterns

Eliminate Navigation Code and Compare Code Mechanically [p. 227] re-
inforce each other: Navigation code that is spread across different clients
spreads duplicated code over the system. Compare Code Mechanically
helps to detect this phenomenon. Eliminate Navigation Code brings the
duplicated code together, where it is easier to refactor and eliminate.

262 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

9.3. SPLIT UP GOD CLASS 263

9.3 Split Up God Class

Also Known As: The Blob [BMMM98], God Class [Rie96]

Intent Split up a class with too many responsibilities into a number of smaller,
cohesive classes.

Problem

How do you maintain a class that assumes too many responsibilities?

This problem is difficult because:

• By assuming too many responsibilities, a god class monopolizes con-
trol of an application. Evolution of the application is difficult because
nearly every change touches this class, and affects multiple respon-
sibilities.

• It is difficult to understand the different abstractions that are inter-
mixed in a god class. Most of the data of the multiple abstractions
are accessed from different places.

• Identifying where to change a feature without impacting the other
functionality or other objects in the system is difficult. Moreover,
changes in other objects are likely to impact the god class, thus ham-
pering the evolution of the system.

• It is nearly impossible to change a part of the behavior of a god class
in a black-box way.

Yet, solving this problem is feasible because:

• You don’t have to fix the problem in one shot.

• You can use Semantic Wrapper to wrap it and present interfaces.

Solution

Incrementally redistribute the responsibilities of the god class either to its
collaborating classes or to new classes that are pulled out the god class.
When there is nothing left of the god class but a facade, remove or depre-
cate the facade.

264 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

Detection

A god class may be recognized in various ways:

• a single huge class treats many other classes as data structures.

• a “root” class or other huge class has a name containing words like
“System”, “Subsystem”, “Manager”, “Driver”, or “Controller”.

• changes to the system always result in changes to the same class.

• changes to the class are extremely difficult because you cannot iden-
tify which parts of the class they affect.

• reusing the class is nearly impossible because it covers too many de-
sign concerns.

• the class is a domain class holding the majority of attributes and
methods of a system or subsystem. (Note that the threshold is not
absolute because some UI frameworks produce big classes with lots
of methods, and some database interface classes may need a lot of
attributes).

• the class has an unrelated set of methods working on separated in-
stance variables. The cohesiveness of the class is usually low.

• the class requires long compile times, even for small modifications.

• the class is difficult to test due to the many responsibilities it as-
sumes.

• the class uses a lot of memory.

• people tell you: “This is the heart of the system”.

• when you ask for the responsibility of a god class you get various,
long and unclear answers.

• god classes are the nightmare of maintainers, so ask what classes are
huge and difficult to maintain. Ask what is the class they would
not like to work on. (Variant: Ask people to choose which class they
want to work on. The one that everybody avoids may be a god class.)

Steps

The solution relies on incrementally moving behavior away from the god
class. During this process, data containers will become more object-like
by acquiring the functionality that the god class was performing on their
data. Some new classes will also be extracted from the god class.

9.3. SPLIT UP GOD CLASS 265

Clients

ClassThree

iv3

iv4

m5

DataOne

iv1

getIv1

setIv1

DataTwo

iv2

getIv2

setIv2

God Class

iv3

iv4

m1

m2

m3

m4

m5

Clients

ClassOne

iv1

m1

m2

ClassTwo

iv2

m3

m4

Facade

m1

m2

m3

m4

m5

ClassThree

iv3

iv4

m5

Clients

ClassOne

iv1

m1

m2

ClassTwo

iv2

m3

m4

Figure 9.8: A god class is refactored in two stages, first by redistributing
responsibilities to data containers, or by spawning off new classes, until
there is nothing left but a facade, and second by removing the facade.

The following steps describe how this process ideally works. Note,
however, that god classes can vary greatly in terms of their internal struc-
ture, so different techniques may be used to implement the transformation
steps. Furthermore, it should be clear that a god class cannot be cured in
one shot, so a safe way to proceed is to first transform a god class into a
lightweight god class, then into a Facade [p. 319] that delegates behavior
to its acquaintances. Finally, clients are redirected to the refactored data
containers and the other new objects, and the Facade can be removed. The
process is illustrated in figure 39.

The following steps are applied iteratively. Be sure to apply Regression
Test After Every Change [p. 201]:

1. Identify cohesive subsets of instance variables of the god class, and
convert them to external data containers. Change the initialization

266 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

methods of the god class to refer to instances of the new data con-
tainers.

2. Identify all classes used as data containers by the god class (includ-
ing those created in step 1) and apply Move Behavior Close to Data
to promote the data containers into service providers. The original
methods of the god class will simply delegate behavior to the moved
methods.

3. After iteratively applying steps 1 and 2, there will be nothing left of
the god class except a facade with a big initialization method. Shift
the responsibility for initialization to a separate class, so only a pure
facade is left. Iteratively redirect clients to the objects for which the
former god class is now a facade, and either deprecate the facade
(see Deprecate Obsolete Interfaces [p. 215]), or simply remove it.

Tradeoffs

Pros

• Application control is no longer centralized in a single monolithic
entity but distributed amongst entities that each assume a well-
defined set of responsibilities. The design evolves from a procedural
design towards an object-oriented design based on autonomous in-
teracting objects.

• Parts of the original god class are easier to understand and to main-
tain.

• Parts of the original god class are more stable because they deal with
less issues.

• Overall compilation time may be reduced due to the simplification
of system dependencies.

Cons

• Splitting up a god class is a long, slow and tedious process.

• Maintainers will no longer be able to go to a single god class to locate
behavior to fix.

• The number of classes will increase.

9.3. SPLIT UP GOD CLASS 267

Difficulties

• God class methods may themselves be large, procedural abstractions
with too many responsibilities. Such methods may need to be de-
composed before cohesive sets of instance variables and methods
can be teased out as classes.

When the legacy solution is the solution

What is riskier? To Split Up God Class or to leave it alone? A real god class
is a large, unwieldy beast. Splitting it up into more robust abstractions
may introduce considerable cost.

The key issue is whether the god class needs to be maintained. If the
god class consists of stable, legacy code that rarely needs to be extended
or modified, then refactoring it is a questionable investment of effort.

Suppose, on the other hand, that it is the clients of the god class that are
unstable, and need to be frequently adapted to changing requirements.
Then the clients should be shielded from the god class since it is not pre-
senting a clean interface. Consider instead applying Present the Right In-
terface [p. 207], which will introduce a layer of clean, object-oriented ab-
stractions between the clients and the god class, and may make it easier to
evolve the clients.

Rationale

Do not create god classes/objects in your system.
— Arthur Riel, Heuristic 3.2 [Rie96]

God classes impede evolution because they achieve only a low level of
procedural abstraction, so changes may affect many parts of the god class,
its data containers and its clients. By splitting a god class up into object-
oriented abstractions, changes will tend to be more localized, therefore
easier to implement.

Related Patterns

Foote and Yoder in “Big Ball of Mud” [FY00] note that god classes (and
worse) arise naturally in software development.

“People build BIG BALLS OF MUD because they work. In many
domains, they are the only things that have been shown to work. In-

268 CHAPTER 9. REDISTRIBUTE RESPONSIBILITIES

deed, they work where loftier approaches have yet to demonstrate that
they can compete.

It is not our purpose to condemn BIG BALLS OF MUD. Casual
architecture is natural during the early stages of a system’s evolution.
The reader must surely suspect, however, that our hope is that we can
aspire to do better. By recognizing the forces and pressures that lead
to architectural malaise, and how and when they might be confronted,
we hope to set the stage for the emergence of truly durable artifacts
that can put architects in dominant positions for years to come. The
key is to ensure that the system, its programmers, and, indeed the
entire organization, learn about the domain, and the architectural
opportunities looming within it, as the system grows and matures.”

— Foote & Yoder [FY00]

Present the Right Interface [p. 207] is a competing pattern that should
be applied when the god class itself rarely needs to be modified or ex-
tended.

Chapter 10

Transform Conditionals to
Polymorphism

After duplicated code, data containers and god classes, one of the most
striking signs of misplaced responsibilities in object-oriented software is
the occurrence of large methods consisting almost entirely of case state-
ments that test the type of some argument.

Although case statements are not inherently bad, in object-oriented
code they are frequently a sign that the object doing the testing is assum-
ing responsibilities that would better be distributed to the objects being
tested. Big conditionals arise naturally over time, just as duplicated code
does. As the software is adapted to handle new cases, these cases pop up
as conditionals in the code. The problem with these big conditionals is that
they can make the code much more fragile in the long term.

Forces

The following forces are at play:

• As requirements change over time, classes in a software system will
have to be adapted to handle new, special cases.

• Adding new classes or subclasses to a system clutters the namespace.

• The quickest way to adapt a working piece of software to handle a
new requirement, is often to add a conditional test for the special
case at some point in the code.

269

270CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

• Over time, a simple design tends to get cluttered with many condi-
tional tests for special cases.

• Case statements group all the variants into a single place instead of
spreading the different cases across different classes. However, they
lead to design that is less flexible if the case statement appears in
more than one place.

• In some programming languages, case statements are a more con-
ventional idiom to implement varying behavior than polymorphism.

Large conditionals are often a sign that behavior implemented by
clients should probably be be shifted to the provider classes. Typically
a new method will be introduced to the provider hierarchy, and the in-
dividual cases of the conditional statement will each move to one of the
provider classes.

Although the symptom is readily recognizable, the technical details
and the preferred solution may differ considerably. In particular, when
the provider hierarchy already exists, and the conditions explicitly check
the class of the provider instance, the refactoring is relatively straightfor-
ward. But often the provider hierarchy does not exist, and the conditions
test attributes that only implicitly model type information. Furthermore,
the conditionals may occur not only in external clients, but even in the
provider hierarchy itself.

Overview

Transform Conditionals to Polymorphism is a pattern language that de-
scribes how to redistribute responsibilities to eliminate these large condi-
tionals, thereby reducing coupling between classes, and improving flexi-
bility in the face of future changes.

This pattern language consists of six patterns which address the most
common problems that occur when conditionals are used to simulate
polymorphism. Transform Self Type Checks and Transform Client Type
Checks address the most typical cases that arise when explicit type checks
are performed. Transform Conditionals into Registration occurs less fre-
quently. We also include Factor out State, Factor out Strategy and Intro-
duce Null Object, not in order to copy three established design patterns
(State [p. 321], Strategy [p. 321] and Null Object [p. 320]) but rather to
show how these design patterns may apply in a reengineering context to
eliminate type-checking conditionals.

Figure 10.1 summarizes the relationships and the differences between
the patterns.

271

Figure 10.1: Relationships between the patterns constituting Transform
Conditionals to Polymorphism.

• Transform Self Type Checks eliminates conditionals over type infor-
mation in a provider class by introducing subclasses for each type case.
The conditional code is replaced by a single polymorphic method
call to an instance of one of the new subclasses.

• Transform Client Type Checks transforms conditionals over type in-
formation in a client class by introducing a new method to each of the
provider classes. The conditional is replaced by a single polymor-
phic call to the new method.

• Factor out State handles a special case of Transform Self Type Checks
in which the type information that is being tested may change dy-
namically. A State [p. 321] object is introduced in the provider class to
model the changing state, and the conditional is replaced by a call to
a method of the new State object.

• Factor out Strategy is another special case of Transform Self Type
Checks in which the algorithms to handle the various provider cases
is factored out by introducing a new Strategy [p. 321] object. The key
difference with Factor out State is that the algorithm rather than the
state may vary dynamically.

• Introduce Null Object addresses the special case of Transform Client
Type Checks in which the test performed checks whether or not the
provider is defined. The conditional is eliminated by introducing a
Null Object [p. 320] which implements the appropriate default be-
havior.

• Transform Conditionals into Registration addresses the situation in

272CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

which the conditional is responsible for starting up an external tool
based on some attribute of an object to be handled. The solution is to
introduce a lookup service where tools are registered as plug-ins. The
conditional is then replaced by a simple lookup for the registered
plug-in. The solution is then fully dynamic because new plug-ins
can be added or removed without any changes to the tool users.

10.1. TRANSFORM SELF TYPE CHECKS 273

10.1 Transform Self Type Checks

Intent Improve the extensibility of a class by replacing a complex conditional
statement with a call to a hook method implemented by subclasses.

Problem

A class is hard to modify or extend because it bundles multiple possible
behaviors in complex conditional statements that test some attribute rep-
resenting the current “type” of the object.

This problem is difficult because:

• Conceptually simple extensions require many changes to the condi-
tional code.

• Subclassing is next to impossible without duplicating and adapting
the methods containing the conditional code.

• Adding a new behavior always results in changes to the same set of
methods and always results in adding a new case to the conditional
code.

Yet, solving this problem is feasible because:

• Self type checks simulate polymorphism. The conditional code tells
you what subclasses you should have instead.

Solution

Identify the methods with complex conditional branches. In each case,
replace the conditional code with a call to a new hook method. Identify
or introduce subclasses corresponding to the cases of the conditional. In
each of these subclasses, implement the hook method with the code corre-
sponding to that case in the original case statement.

Detection

Most of the time, the type discrimination will jump in your face while you
are working on the code, so this means that you will not really need to
detect where the checks are made. However, it can be interesting to have
simple techniques to quickly assess if unknown parts of a system suffer
from similar practices. This can be a valuable source of information to
evaluate the state of a system.

274CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

• Look for long methods with complex decision structures on some
immutable attribute of the object that models type information. In
particular look for attributes that are set in the constructor and never
changed.

• Attributes that are used to model type information typically take on
values from some enumerated type, or from some finite set of con-
stant values. Look for constant definitions whose names represent
entities or concepts that one would usually expect to be associated
to classes (like RetiredEmployee or PendingOrder). The conditionals
will normally just compare the value of a fixed attribute to one of
these constant values.

• Especially look for classes where multiple methods switch on the
same attribute. This is another common sign that the attribute is
being used to simulate a type.

• Since methods containing case statements tend to be long, it may
help to use a tool that sorts methods by lines of code or visualizes
classes and methods according to their size. Alternatively, search for
classes or methods with a large number of conditional statements.

• For languages like C++ or Java where it is common to store the im-
plementation of a class in a separate file, it is straightforward to
search for and count the incidence of conditional keywords (if, else,
case, etc.). On a UNIX system, for example,

grep 'switch' `find . --name "*.cxx" --print`

enumerates all the files in a directory tree with extension .cxx that
contain a switch. Other text processing tools like agrep offer possi-
bilities to pose finer granularity queries. Text processing languages
like Perl may be better suited for evaluating some kinds of queries,
especially those that span multiple lines.

• C/C++: Legacy C code may simulate classes by means of union
types. Typically the union type will have one data member that en-
codes the actual type. Look for conditional statements that switch
on such data members to decide which type to cast a union to and
which behavior to employ.

In C++ it is fairly common to find classes with data members that
are declared as void pointers. Look for conditional statements that
cast such pointers to a given type based on the value of some other
data member. The type information may be encoded as an enum or
(more commonly) as a constant integer value.

• Ada: Because Ada 83 did not support polymorphism (or subprogram
access types), discriminated record types are often used to simulate

10.1. TRANSFORM SELF TYPE CHECKS 275

A

m()

Client

Client

AA

m()

hook()

B

hook()

C

hook()

D

hook()

...

hook()

...

...

case B: this.m()

case C: ...

case D: ...

...

this.m()

Figure 10.2: Transformation of explicit type check into self polymorphic
method calls.

polymorphism. Typically an enumeration type provides the set of
variants and the conversion to polymorphism is straightforward in
Ada95.

• Smalltalk: Smalltalk provides only a few ways to manipulate types.
Look for applications of the methods isMemberOf: and isKindOf:,
which signal explicit type-checking. Type checks might also be
made with tests like self class = anotherClass, or with property tests
throughout the hierarchy using methods like isSymbol, isString, is-
Sequenceable, isInteger.

Steps

1. Identify the class to transform and the different conceptual classes
that it implements. An enumeration type or set of constants will
probably document this well.

2. Introduce a new subclass for each behavior that is implemented (see
Figure 10.2). Modify clients to instantiate the new subclasses rather
than the original class. Run the tests.

3. Identify all methods of the original class that implement varying be-
havior by means of conditional statements. If the conditionals are
surrounded by other statements, move them to separate, protected
hook methods. When each conditional occupies a method of its own,
run the tests.

276CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

4. Iteratively move the cases of the conditionals down to the corre-
sponding subclasses, periodically running the tests.

5. The methods that contain conditional code should now all be empty.
Replace these by abstract methods and run the tests.

6. Alternatively, if there are suitable default behaviors, implement
these at the root of the new hierarchy.

7. If the logic required to decide which subclass to instantiate is non-
trivial, consider encapsulating this logic as a factory method of the
new hierarchy root. Update clients to use the new factory method
and run the tests.

Tradeoffs

Pros

• New behaviors can now be added in a incremental manner, without
having to change a set of methods of a single class containing all the
behavior. A specific behavior can now be understood independently
from the other variations.

• A new behavior represents its data independently from the others,
thereby minimizing the possible interference and increasing the un-
derstandability of the separated behaviors.

• All behaviors now share a common interface, thereby improving
their readability.

Cons

• All the behaviors are now dispersed into multiple but related ab-
stractions, so getting an overview of the behavior may be more dif-
ficult. However, the concepts are related and share the interface rep-
resented by the abstract class reducing then the problem.

• The larger number of classes makes the design more complex, and
potentially harder to understand. If the original conditional state-
ments are simple, it may not be worthwhile to perform this transfor-
mation.

• Explicit type checks are not always a problem and we can sometimes
tolerate them. Creating new classes increases the number of abstrac-
tions in the applications and can clutter namespaces. Hence, ex-
plicit type checks may be an alternative to the creation of new classes
when:

10.1. TRANSFORM SELF TYPE CHECKS 277

A

m()

...

Case B: ...

Case C: ...

Case D: ...

...

A

m()

delegate m ()

...

delegate
AA

m()

hook()

...

hook()

...

B

hook()

C

hook()

D

hook()

Figure 10.3: Combining simple delegation and Transform Self Type
Checks when the class cannot be subclassed.

– the set over which the method selection is fixed and will not
evolve in the future, and

– the type check is only made in a few places.

Difficulties

• Since the requisite subclasses do not yet exist, it can be hard to tell
when conditionals are being used to simulate multiple types.

• Wherever instances of the transformed class were originally created,
now instances of different subclasses must be created. If the instan-
tiation occurred in client code, that code must now be adapted to in-
stantiate the right class. Factory objects or methods may be needed
to hide this complexity from clients.

• If you do not have access to the source code of the clients, it may be
difficult or impossible to apply this pattern since you will not be able
to change the calls to the constructors.

• If the case statements test more than one attribute, it may be neces-
sary to support a more complex hierarchy, possibly requiring multi-
ple inheritance. Consider splitting the class into parts, each with its
own hierarchy.

• When the class containing the original conditionals cannot be sub-
classed, Transform Self Type Checks can be composed with dele-

278CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

gation. The idea is to exploit polymorphism on another hierarchy
by moving part of the state and behavior of the original class into a
separate class to which the method will delegate, as shown in Fig-
ure 10.3.

When the legacy solution is the solution

There are some situations in which explicit type-checks may nevertheless
be the right solution:

• The conditional code may be generated from a special tool. Lexical
analysers and parsers, for example, may be automatically generated
to contain the kind of conditional code we are trying to avoid. In
these cases, however, the generated classes should never be manu-
ally extended, but simply regenerated from the modified specifica-
tions.

Example

We worked on a complex system that controls large, physical machines
by sending them messages. These messages are represented by the class
Message and can be of different types.

Message

set_value(action Integer)

send(channel Channel)

set_value(text String)

receive(channel Channel)

Client1 Client2

class Message {

public:

Message();

set_value(char* text);

set_value(int action);

void send(Channel c);

void receive(Channel c);

...

private:

void* data_;

int type_;

static const int TEXT = 1;

static const int ACTION = 2;

...

}

Message::send(Channel c) {

switch (type_) {

case TEXT:

...

case ACTION:

...

}

}

void Client1::doit() { ...

Message * myMessage =

new Message();

myMessage->set_Value("...");

...

}

Figure 10.4: Initial design and source code.

10.1. TRANSFORM SELF TYPE CHECKS 279

Before.

A message class wraps two different kinds of messages (TEXT and AC-
TION) that must be serialized to be sent across a network connection as
shown in the code and the figure. We would like to be able to send a
new kind of message (say VOICE), but this will require changes to several
methods of Message as shown in Figure 10.4.

Message

send(channel Channel)
receive(channel Channel)

Client1 Client2

Text_Message

Text_Message(String)

send(channel Channel)

receive(channel Channel)

Action_Message

Action_Message(int)

send(channel Channel)

receive(channel Channel)

class Message {

public:

virtual void

send(Channel c) = 0;

virtual void

receive(Channel c) = 0;

...

};

class Text_Message: public Message

{

public:

Text_Message(char* text);

void send(Channel c);

void receive(Channel c);

private:

char* text;

...

};

class Action_Message: public

Message {

public:

Action_Message(int action);

void send(Channel c);

void receive(Channel c);

private:

int action;

...

};

void Client1::doit() { ...

Message * myMessage = new

Text_Message("...");

...

}

Figure 10.5: Resulting hierarchy and source code.

After.

Since Message conceptually implements two different classes,
Text_Message and Action_Message, we introduce these as subclasses of
Message, as shown in Figure 10.5. We introduce constructors for the new
classes, we modify the clients to construct instances of Text_Message and
Action_Message rather than Message, and we remove the set_value()
methods. Our regression tests should run at this point.

280CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

Now we find methods that switch on the type variable. In each case,
we move the entire case statement to a separate, protected hook method,
unless the switch already occupies the entire method. In the case of send(),
this is already the case, so we do not have to introduce a hook method.
Again, all our tests should still run.

Now we iteratively move cases of the case statements from
Message to its subclasses. The TEXT case of Message::send()
moves to Text_Message::send() and the ACTION case moves to Ac-
tion_Message::send(). Every time we move such a case, our tests should
still run.

Finally, since the original send() method is now empty, it can be rede-
clared to be abstract (i.e.,virtual void send(Channel) = 0). Again, our tests
should run.

Rationale

Classes that masquerade as multiple data types make a design harder to
understand and extend. The use of explicit type checks leads to long meth-
ods that mix several different behaviors. Introducing new behavior then
requires changes to be made to all such methods instead of simply speci-
fying one new class representing the new behavior.

By transforming such classes to hierarchies that explicitly represent the
multiple data types, you improve cohesion by bringing together all the
code concerning a single data type, you eliminate a certain amount of du-
plicated code (i.e., the conditional tests), and you make your design more
transparent, and consequently easier to maintain.

Related Patterns

In Transform Self Type Checks the condition to be transformed tests type
information that is represented as an attribute of the class itself.

If the conditional tests mutable state of the host object, consider instead
applying Factor out State [p. 291], or possibly Factor out Strategy [p. 295].

If the conditional occurs in a client rather than in the provider class
itself, consider applying Transform Client Type Checks [p. 281].

If the conditional code tests some type attribute of a second object in or-
der to select some third handler object, consider instead applying Transform
Conditionals into Registration [p. 303].

10.2. TRANSFORM CLIENT TYPE CHECKS 281

10.2 Transform Client Type Checks

Intent Reduce client/provider coupling by transforming conditional code that
tests the type of the provider into a polymorphic call to a new provider method.

Problem

How do you reduce the coupling between clients and providers of ser-
vices, where the clients explicitly check the type of providers and have the
responsibility to compose providers code?

This problem is difficult because:

• Adding a new subclass to the provider hierarchy requires making
changes to many clients, especially where the tests occur.

• Clients and providers will tend to be strongly coupled, since clients
are performing actions that should be the responsibility of the
providers.

Yet, solving this problem is feasible because:

• The conditionals tell you to which classes you should transfer be-
havior.

Solution

Introduce a new method to the provider hierarchy. Implement the new
method in each subclass of the provider hierarchy by moving the corre-
sponding case of the clients conditional to that class. Replace the entire
conditional in the client by a simple call to the new method.

Detection

Apply essentially the same techniques described in Transform Self Type
Checks to detect case statements, but look for conditions that test the type
of a separate service provider which already implements a hierarchy. You
should also look for case statements occurring in different clients of the
same provider hierarchy.

• C++: Legacy C++ code is not likely to make use of run-time type
information (RTTI). Instead, type information will likely be encoded

282CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

in a data member that takes its value from some enumerated type
representing the current class. Look for client code switching on such
data members.

• Ada: Detecting type tests falls into two cases. If the hierarchy is im-
plemented as a single discriminated record then you will find case
statements over the discriminant. If the hierarchy is implemented
with tagged types then you cannot write a case statement over the
types (they are not discrete); instead an if-then-else structure will be
used.

• Smalltalk: As in Transform Self Type Checks, look for applications of
isMemberOf: and isKindOf:, and tests like self class = anotherClass.

• Java: Look for applications of the operator instanceof, which tests
membership of an object in a specific, known class. Although
classes in Java are not objects as in Smalltalk, each class that is
loaded into the virtual machine is represented by a single instance of
java.lang.Class. It is therefore possible to determine if two objects, x
and y belong to the same class by performing the test:

x.getClass() == y.getClass()

Alternatively, class membership may be tested by comparing class
names:

x.getClass().getName().equals(y.getClass().getName())

Steps

1. Identify the clients performing explicit type checks.

2. Add a new, empty method to the root of the provider hierarchy
representing the action performed in the conditional code (see Fig-
ure 10.6).

3. Iteratively move a case of the conditional to some provider class, re-
placing it with a call to that method. After each move, the regression
tests should run.

4. When all methods have been moved, each case of the conditional
consists of a call to the new method, so replace the entire conditional
by a single call to the new method.

5. Consider making the method abstract in the provider’s root. Alter-
natively implement suitable default behavior here.

10.2. TRANSFORM CLIENT TYPE CHECKS 283

Client

a : A

m()

...

switch (a.class)

case B: a.init(); ((B) a).x();

case C: a.init(); ((C) a).y();

case D: ((D) a).z();

...

...

a.doit();

...

A

init()

B

x()

C

init()

y()

D

z()

A

init()

doit()

B

x()

doit()

C

init()

y()

doit()

D

z()

doit()

Client

a : A

m()

this.init();

this.x();
this.init();

this.y();

this.z();

Figure 10.6: Transformation of explicit type check used to determine which
methods of a client should be invoked into polymorphic method calls.

Other Steps to Consider

• It may well be that multiple clients are performing exactly the same
test and taking the same actions. In this case, the duplicated code
can be replaced by a single method call after one of the clients has
been transformed. If clients are performing different tests or taking
different actions, then the pattern must be applied once for each con-
ditional.

• If the case statement does not cover all the concrete classes of the
provider hierarchy, a new abstract class may need to be introduced
as a common superclass of the concerned classes. The new method
will then be introduced only for the relevant subtree. Alternatively, if
it is not possible to introduce such an abstract class given the existing
inheritance hierarchy, consider implementing the method at the root
with either an empty default implementation, or one that raises an

284CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

exception if it is called for an inappropriate class.

• If the conditionals are nested, the pattern may need to be applied
recursively.

Tradeoffs

Pros

• The provider hierarchy offers a new, polymorphic service available
to other clients as well.

• The code of the clients is now better organized and does not have to
deal anymore with concerns that are now under the responsibility of
the provider.

• All the code concerning the behavior of a single provider is now to-
gether in a single location.

• The fact that the provider hierarchy offers a uniform interface allows
providers to be modified without impacting clients.

Cons

• Sometimes it is convenient to see the code handling different cases
in a single location. Transform Client Type Checks redistributes
the logic to the individual provider classes, with the result that the
overview is lost.

Difficulties

• Normally instances of the provider classes should be already have
been created so we do not have to look for the creation of the in-
stances, however refactoring the interface will affect all clients of the
provider classes and must not be undertaken without considering
the full consequences of such an action.

When the legacy solution is the solution

Client type checks may nevertheless be the right solution when the
provider instance does not yet exist or when its class cannot be extended:

• An Abstract Factory [p. 319] object may need to test a type variable
in order to know which class to instantiate. For example, a factory

10.2. TRANSFORM CLIENT TYPE CHECKS 285

may stream objects in from a text file representation, and test some
variable that tells it which class the streamed object should belong
to.

• Software that interfaces to a non-object-oriented library, such as a
legacy GUI library, may force the developer to simulate the dispatch
manually. It is questionable whether, in such cases, it is cost-effective
to develop an object-oriented facade to the procedural library.

• If the provider hierarchy is frozen (e.g., because the source code is
not available), then it will not be possible to transfer behavior to the
provider classes. In this case, wrapper classes may be defined to ex-
tend the behavior of the provider classes, but the added complexity
of defining the wrappers may overwhelm any benefits.

Example

Before

The following C++ code illustrates misplaced responsibilities since the
client must explicitly type check instances of Telephone to determine what
action to perform. The code in bold highlights the difficulties with this ap-
proach.

class Telephone {
public:

enum PhoneType {
POTSPHONE, ISDNPHONE, OPERATORPHONE
};

Telephone() {}
PhoneType phoneType() { return myType; }

private:
PhoneType myType;

protected:
void setPhoneType(PhoneType newType) { myType = newType; }

};

class POTSPhone : public Telephone {

public:
POTSPhone() { setPhoneType(POTSPHONE); }
void tourneManivelle();
void call();

};
...

286CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

class ISDNPhone: public Telephone {
public:

ISDNPhone() { setPhoneType(ISDNPHONE);}
void initializeLine();
void connect();

};
...

class OperatorPhone: public Telephone {
public:

OperatorPhone() { setPhoneType(OPERATORPHONE); }
void operatorMode(bool onOffToggle);
void call();

};

void initiateCalls(Telephone ** phoneArray, int numOfCalls) {
for(int i = 0; i<numOfCalls ;i++) {

Telephone * p = phoneArray[i];

switch(p-->phoneType()) {
case Telephone::POTSPHONE: {

POTSPhone *potsp = (POTSPhone *) p;
potsp-->tourneManivelle();
potsp-->call();
break;

}
case Telephone::ISDNPHONE: {

ISDNPhone *isdnp = (ISDNPhone *) p;
isdnp-->initializeLine();
isdnp-->connect();
break;

}
case Telephone::OPERATORPHONE: {

OperatorPhone *opp = (OperatorPhone *) p;
opp-->operatorMode(true);
opp-->call();
break;

}
default: cerr << "Unrecognized Phonetype" << endl;
};

}
}

10.2. TRANSFORM CLIENT TYPE CHECKS 287

Client

m()

...

switch (a.class)

case TELEPHONE::POTS: ...

case TELEPHONE::ISDN: ...

case TELEPHONE::OTHERS: ...

...

Telephone

makeCall()

POTSPhone

makeCall()

ISDNPhone

makeCall()

OperatorPhone

makeCall()

Client

m()

...

a.makeCall()

...

Telephone

POTSPhone ISDNPhone OperatorPhone

Figure 10.7: Transforming explicit type checks to polymorphic method in-
vocations.

After

After applying the pattern the client code will look like the following. (See
also Figure 10.7.)

class Telephone {
public:

Telephone() {}
virtual void makeCall() = 0;

};

Class POTSPhone : public Telephone {
void tourneManivelle();
void call();

public:
POTSPhone() {}
void makeCall();

};
void POTSPhone::makeCall() {

this-->tourneManivelle();
this-->call();

}

class ISDNPhone: public Telephone {

288CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

void initializeLine();
void connect();

public:
ISDNPhone() { }
void makeCall();

};
void ISDNPhone::makeCall() {

this-->initializeLine();
this-->connect();

}

class OperatorPhone: public Telephone {
void operatorMode(bool onOffToggle);
void call();

public:
OperatorPhone() { }
void makeCall();

};
void OperatorPhone::makeCall() {

this-->operatorMode(true);
this-->call();

}
void initiateCalls(Telephone ** phoneArray, int numOfCalls) {

for(int i = 0; i<numOfCalls ;i++) {
phoneArray[i]-->makeCall();

}
}

Rationale

Riel states, “Explicit case analysis on the type of an object is usually an
error. The designer should use polymorphism in most of these cases”
[Rie96]. Indeed, explicit type checks in clients are a sign of misplaced re-
sponsibilities since they increase coupling between clients and providers.
Shifting these responsibilities to the provider will have the following con-
sequences:

• The client and the provider will be more weakly coupled since the
client will only need to explicitly know the root of the provider hier-
archy instead of all of its concrete subclasses.

• The provider hierarchy may evolve more gracefully, with less chance
of breaking client code.

10.2. TRANSFORM CLIENT TYPE CHECKS 289

• The size and complexity of client code is reduced. The collaborations
between clients and providers become more abstract.

• Abstractions implicit in the old design (i.e., the actions of the condi-
tional cases) will be made explicit as methods, and will be available
to other clients.

• Code duplication may be reduced (if the same conditionals occur
multiply).

Related Patterns

InTransform Client Type Checks the conditional is made on the type infor-
mation of a provider class. The same situation occurs in Introduce Null
Object where the conditional tests over null value before invoking the
methods. From this point of view, Introduce Null Object is a specializa-
tion of Transform Client Type Checks.

Transform Conditionals into Registration handles the special case in
which the client’s conditional is used to select a third object (typically an
external application or tool) to handle the argument.

Replace Conditional with Polymorphism [p. 318] is the core refactoring
of this reengineering pattern, so the reader may refer to the steps described
in [FBB+99].

290CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

10.3. FACTOR OUT STATE 291

10.3 Factor out State

Intent Eliminate complex conditional code over an object’s state by applying
the State design pattern.

Problem

How do you make a class whose behavior depends on a complex evalua-
tion of its current state more extensible?

This problem is difficult because:

• There are several complex conditional statements spread out over
the methods of the object. Adding new behavior may affect these
conditionals in subtle ways.

• Whenever new possible states are introduced, all the methods that
test state have to be modified.

Yet, solving this problem is feasible because:

• The object’s instance variables are typically used to model different
abstract states, each of which has its own behavior. If you can iden-
tify these abstract states, you can factor the state and the behavior
out into a set of simpler, related classes.

Solution

Apply the State [p. 321] pattern, i.e., encapsulate the state-dependent be-
havior into separate objects, delegate calls to these objects and keep the
state of the object consistent by referring to the right instance of these state
objects (see figure 47).

As in Transform Self Type Checks, transform complex conditional code
that tests over quantified states into delegated calls to state classes. Apply
the State [p. 321] pattern, delegating each conditional case to a separate
State object. We invite the reader to read State and State Patterns [p. 321]
for a deep description of the problem and discussion [GHJV95] [ABW98]
[DA97]. Here we only focus on the reengineering aspects of the pattern.

Steps

1. Identify the interface of a state and the number of states.

292CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

A

request()

AState

handleRequest()
nextState()

StateA

handleRequest()

nextState()

AContext

request()

...

case state==A: ...

 state = C

case state==B: ...

case state==C: ...

state = B

state.handleRequest();

state = state.nextState();

...

state

return new StateC();

StateB

handleRequest()

nextState()

StateC

handleRequest()

nextState()

Figure 10.8: Transformation to go from a state pattern simulated using
explicit state conditional to a situation where the state pattern has been
applied.

If you are lucky, each conditional will partition the state space in
the same way, and the number of states will equal the number of
cases in each conditional. In case the conditionals overlap, a finer
partitioning will be required.

The interface of a state depends on how the state information is ac-
cessed and updated, and may need to be refined in the subsequent
steps.

2. Create a new abstract class, State, representing the interface of the
state.

3. Create a new class subclass of State for each state.

4. Define methods of the interface identified in Step 1 in each of the
state classes by copying the corresponding code of the conditional to
the new method. Do not forget to change the state of the instance
variable in the Context to refer to the right instance of State class.
The State methods have the responsibility to change the Context so
that it always refers to the next state instance.

5. Add a new instance variable in the Context class.

10.3. FACTOR OUT STATE 293

6. You may have to have a reference from the State to the Context class
to invoke the state transitions from the State classes.

7. Initialize the newly created instance to refer to a default state class
instance.

8. Change the methods of the Context class containing the tests to del-
egate the call to the instance variable.

Step 4 can be performed using the Extract Method operation of the
Refactoring Browser. Note that after each step, the regression tests should
still run. The critical step is the last one, in which behavior is delegated to
the new state objects.

Tradeoffs

Pros

• Limited Impact. The public interface of the original class does not
have to change. Since the state instances are accessed by delegation
from the original object, the clients are unaffected. In the straightfor-
ward case the application of this pattern has a limited impact on the
clients.

Cons

• The systematic application of this pattern may lead to an explosion
in the number of classes.

• This pattern should not be applied when:

– there are too many possible states, or the number of states is not
fixed

– it is hard to determine from the code how and when state tran-
sitions occur.

When the legacy solution is the solution

This pattern should not be applied lightly.

• When the states are clearly identified and it is known that they will
not be changed, the legacy solution has the advantage of grouping
all the state behavior by functionality instead of spreading it over
different subclasses.

294CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

• In certain domains, such as parsers, table-driven behavior, encoded
as conditionals over state, are well-understood, and factoring out the
state objects may just make the code harder to understand, and hence
to maintain.

Known Uses

The Design Patterns Smalltalk Companion [ABW98] presents a step-by-step
code transformation.

10.4. FACTOR OUT STRATEGY 295

10.4 Factor out Strategy

Intent Eliminate conditional code that selects a suitable algorithm by applying
the Strategy design pattern.

Problem

How do you make a class whose behavior depends on testing the value of
some variable more extensible?

This problem is difficult because:

• New functionality cannot be added without modifying all the meth-
ods containing the conditional code.

• The conditional code may be spread over several classes which make
similar decisions about which algorithm to apply.

Yet, solving this problem is feasible because:

• The alternative behaviors are essentially interchangeable.

Solution

Apply the Strategy pattern, i.e., encapsulate the algorithmic dependent be-
havior into separate objects with polymorphic interfaces and delegate calls
to these objects (see Figure 10.9).

Steps

1. Identify the interface of the strategy class.

2. Create a new abstract class, Strategy, representing the interface of
the strategies.

3. Create a new class subclass of Strategy for each identified algo-
rithms.

4. Define methods of the interface identified in Step 1 in each of the
strategy classes by copying the corresponding code of the test to the
method.

5. Add a new instance variable in the Context class to refer to the cur-
rent strategy.

296CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

A

operation()

AStrategy

handleOperation()

AContext

operator()

strategy

StrategyB

handleOperation()

StrategyA

handleOperation()

strategy.handleOperation()

...

...

case A: ...

case B: ...

case C: ...

...

Figure 10.9: Transformation to go from a state pattern simulated using
explicit state conditional to a situation where the state pattern has been
applied.

6. You may have to have a reference from the Strategy to the Context
class to provide access to the information maintained by the Context
(See difficulties).

7. Initialize the newly created instance to refer to a default strategy in-
stance.

8. Change the methods of the Context class containing the tests by elim-
inating the tests and delegating the call to the instance variable.

Step 4 can be performed using the Extract Method operation of the
Refactoring Browser. Note that after each step, the regression tests should
still run. The critical step is the last one, in which behavior is delegated to
the new Strategy objects.

Tradeoffs

Pros

• Limited Impact. The public interface of the original class does not
have to change. Since the Strategy instances are accessed by delega-
tion from the original object, the clients are unaffected. In a straight-
forward case the application of this pattern has a limited impact on
the clients. However, the Context interface will be reduced because

10.4. FACTOR OUT STRATEGY 297

all the previously implemented algorithms are now moved to Strat-
egy classes. So you have to check the invocations of these methods
and decide on a per case base.

• After applying this pattern, you will be able to plug new strategies
without impacting modifying the interface of the Context. Adding a
new strategy does not require to recompile the Context class and its
clients.

• After applying this pattern, the interface of the Context class and the
Strategy classes will be clearer.

Cons

• The systematic application of this pattern may lead to a class explo-
sion. If you have 20 different algorithms you may not want to have
20 new classes each with only one method.

• Object explosion. Strategies increase the number of instances in an
application.

Difficulties

• There are several ways to share information between the Context and
the Strategy objects, and the tradeoffs can be subtle. The information
can be passed as argument when the Strategy method is invoked,
the Context object itself can be passed as argument, or the Strategy
objects can hold a reference to their context. If the relationship be-
tween the Context and the Strategy is highly dynamic, then it may
be preferable to pass this information as a method argument. More
detailed discussions of this issue exist in the literature on the Strat-
egy [p. 321] pattern [GHJV95] [ABW98].

Example

The Design Patterns Smalltalk Companion [ABW98] presents a step-by-step
code transformation.

Related Patterns

The symptoms and structure of Factor out Strategy bear comparison with
Factor out State. The main difference consists in the fact that the Factor out
State identifies behavior with different possible states of objects whereas

298CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

Factor out Strategy is concerned with interchangeable algorithms that are
independent of object state. Factor out Strategy allows one to add new
strategies without impacting the existing strategy objects.

10.5. INTRODUCE NULL OBJECT 299

10.5 Introduce Null Object

Intent Eliminate conditional code that tests for null values by applying the Null
Object design pattern.

Problem

How can you ease modification and extension of a class in presence of
repeated tests for null values?

This problem is difficult because:

• Client methods are always testing that certain values are not null
before actually invoking their methods.

• Adding a new subclass to the client hierarchy requires testing null
values before invoking some of the provider methods.

Yet, solving this problem is feasible because:

• The client does not need to know that the provider represents a null
value.

Solution

Apply the Null Object [p. 320] pattern, i.e., encapsulate the null behavior as
a separate provider class so that the client class does not have to perform
a null test.

Detection

Look for idiomatic null tests.

Null tests may take different forms, depending on the programming
language and the kind of entity being tested. In Java, for example, a null
object reference has the value null, whereas in C++ a null object pointer has
the value 0.

Steps

Fowler discusses in detail the necessary refactoring steps [FBB+99].

300CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

Figure 10.10: Transformation from a situation based on explicit test of null
value to a situation where a Null Object is introduced.

1. Identify the interface required for the null behavior. (This will nor-
mally be identical to that of the non-null object.)

2. Create a new abstract superclass as a superclass of the RealObject
class.

3. Create a new subclass of the abstract superclass with a name starting
with No or Null.

4. Define default methods into the Null Object class.

5. Initialize the instance variable or structure that was checked to now
hold at least an instance of the Null Object class.

6. Remove the conditional tests from the client.

If you still want to be able to test for null values in a clean way, you
may introduce a query method called isNull in RealObject and Null Object
classes, as described by Fowler [FBB+99].

Tradeoffs

Pros

• The client code is much simpler after applying the pattern.

10.5. INTRODUCE NULL OBJECT 301

• The pattern is relatively simple to apply since the interface of the
provider does not have to be modified.

Cons

• The provider hierarchy becomes more complex.

Difficulties

• Multiple clients may not agree on the reasonable default behavior of
the Null Object. In this case, multiple Null Object classes may need
to be defined.

When the legacy solution is the solution

• If clients do not agree on a common interface.

• When very little code uses the variable directly or when the code that
uses the variable is well-encapsulated in a single place.

Example

The following Smalltalk code is taken from Woolf [Woo98]. Initially the
code contains explicit null tests::

VisualPart>>objectWantedControl
...
↑ctrl isNil

ifFalse:
[ctrl isControlWanted

ifTrue:[self]
ifFalse:[nil]]

It is then transformed into :

VisualPart>>objectWantedControl
...
↑ctrl isControlWanted

ifTrue:[self]
ifFalse:[nil]

Controller>>isControlWanted
↑self viewHasCursor

NoController>>isControlWanted
↑false

302CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

10.6. TRANSFORM CONDITIONALS INTO REGISTRATION 303

10.6 Transform Conditionals into Registration

Intent Improve the modularity of a system by replacing conditionals in clients
by a registration mechanism.

Problem

How can you reduce the coupling between tools providing services and
clients so that the addition or removal of tools does not lead to changing
the code of the clients?

This problem is difficult because:

• Having one single place to look for all the kinds of tools makes it
easy to understand the system and easy to add new tools.

• However, every time you remove a tool, you have to remove one case
in some conditional statement, else certain parts (tool clients) would
still reflect the presence of the removed tools, leading to fragile sys-
tems. Then every time you add a new tool, you have to add a new
conditional in all the tool clients.

Yet, solving this problem is feasible because:

• Long conditionals make it easy to identify the different type of tools
used.

Solution

Introduce a registration mechanism to which each tool is responsible for reg-
istering itself, and transform the tool clients to query the registration repos-
itory instead of performing conditionals.

Steps

1. Define a class describing plug-in objects, i.e., an object encapsulating
the information necessary for registering a tool. Although the inter-
nal structure of this class depends on the purpose of the registration,
a plug-in should provide the necessary information so the tool man-
ager can identify it, create instance of the represented tool and invoke
methods. To invoke a tool method, a method or a similar mechanism
like a block closure or inner class should be stored in the plug-in ob-
ject.

304CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

Tool Client

read

...

case ’xml’:

XMLReader openFile: selectedFile

case ’doc’:

WordReader new withFile: selectedFile

...

XMLReader

openFile: file

WordReader

withFile: file

(PluginManager uniqueInstance

findToolFor: selectedFile suffix)

action

Plugin Manager

add: (Tool)

remove: (Tool)

findToolFor: (File)

XMLReader

loaded

unload

WordReader

load

unload

Plugin

discrimant():

action():

action:

PluginManager uniqueInstance

add: (Plugin

for: XMLReader

with: ’xml’)

PluginManager uniqueInstance

remove: ’xml’

Tool Client

read

Figure 10.11: Transforming conditionals in tool users by introducing a reg-
istration mechanism.

2. Define a class representing the plug-in manager, i.e., that manages the
plug-in objects and that will be queried by the tool clients to check
the presence of the tools. This class will certainly be a singleton since
the plug-ins representing the tools available should not be lost if a
new instance of the plug-in manager is created.

3. For each case of the conditional, define a plug-in object associated
with the given tool. This plug-in object should be created and reg-
istered automatically when the tool it represents is loaded, and it
should be unregistered if and when the tool becomes unavailable.
Sometimes information from the tool client should be passed to the
tool. The current tool client can be passed as argument when the tool
is invoked.

4. Transform the entire conditional expression into a query to the tool
manager object. This query should return a tool associated to the
query and invoke it to access the wished functionality.

5. Remove any tool client actions that directly activate tools. This be-
havior is now the responsibility of the plug-in manager.

10.6. TRANSFORM CONDITIONALS INTO REGISTRATION 305

The client or the plug-in object may have the responsibility to invoke a
tool. It is better to let the plug-in object having this responsibility because it
already holds the responsibility of representing how to represent the tools
and let the clients just says that they need a tool action.

Example

In Squeak [IKM+97], the FileList is a tool that allows the loading of differ-
ent kinds of files, such as Smalltalk code, JPEG images, MIDI files, HTML,
and so on. Depending on the suffix of the selected file, the FileList pro-
poses different actions to the user. We show in the example the loading of
the different file depending on their format.

Before

The FileList implementation creates different menu items representing the
different possible actions depending on the suffix of the files. The dynamic
part of the menu is defined in the method menusForFileEnding: which
takes a file suffix as its argument and returns a menu item containing the
label of the menu item and the name of the corresponding method that
should be invoked on the FileList object.

FileList>>menusForFileEnding: suffix

(suffix = 'jpg') ifTrue:
[↑MenuItem label:'open image in a window'.

selector: #openImageInWindow].
(suffix = 'morph') ifTrue:

[↑MenuItem label: 'load as morph'.
selector: #openMorphFromFile].

(suffix = 'mid') ifTrue:
[↑MenuItem label: 'play midi file'.

selector: #playMidiFile].
(suffix = 'st') ifTrue:

[↑MenuItem label: 'fileIn'.
selector: #fileInSelection].

(suffix = 'swf') ifTrue:
[↑MenuItem label: 'open as Flash'.

selector: #openAsFlash].
(suffix = '3ds') ifTrue:

[↑MenuItem label: 'Open 3DS file'.
selector: #open3DSFile].

(suffix = 'wrl') ifTrue:
[↑MenuItem label: 'open in Wonderland'.

selector: #openVRMLFile].

306CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

(suffix = 'html') ifTrue:
[↑MenuItem label: 'open in html browser'.

selector: #openInBrowser].
(suffix = '*') ifTrue:

[↑MenuItem label: 'generate HTML'.
selector:#renderFile].

The methods whose selectors are associated in the menu are imple-
mented in the FileList class. We give two examples here. First the method
checks if the tool it needs is available, if not it generates a beep, otherwise
the corresponding tool is created and then used to handle the selected file.

FileList>>openInBrowser
Smalltalk at: #Scamper ifAbsent: [↑ self beep].
Scamper openOnUrl: (directory url , fileName encodeForHTTP)

FileList>>openVRMLFile
| scene |
Smalltalk at: #Wonderland ifAbsent: [↑ self beep].
scene := Wonderland new.
scene makeActorFromVRML: self fullName.

After

The solution is to give each tool the responsibility to register itself and let
the FileList query the registry of available tools to find which tool can be
invoked.

Step1. The solution is to first create the class ToolPlugin representing the
registration of a given tool. Here we store the suffix files, the menu label
and the action to be performed when the tools will be invoked.

Object subclass: #ToolPlugin
instanceVariableNames: 'fileSuffix menuLabelName blockToOpen '

Step 2. Then the class PluginManager is defined. It defines a structure to
hold the registered tools and defines behavior to add, remove and find
registered tool.

Object subclass: #PluginManager
instanceVariableNames: 'plugins '

PluginManager>>initialize
plugins := OrderedCollection new.

PluginManager>>addPlugin : aPlugin

10.6. TRANSFORM CONDITIONALS INTO REGISTRATION 307

plugins add: aRegistree

PluginManager>>removePlugin: aBlock

(plugins select: aBlock) copy
do: [:each| plugins remove: each]

PluginManager>>findToolFor: aSuffix
"return a registree of a tool being able to treat file of format
aSuffix"

↑ plugins
detect: [:each| each suffix = aSuffix]
ifNone: [nil]

Note that the findToolFor: method could take a block to select which
of the plug-in objects satisfying it and that it could return a list of plug-in
representing all the tools currently able to treat a given file format.

Step 3. Then the tools should register themselves when they are loaded
in memory. Here we present two registrations, showing that a plug-in
object is created for each tool. As the tools need some information from
the FileList object such as the filename or the directory, the action that has
to be performed takes as a parameter the instance of the FileList object that
invokes it ([:fileList |...] in the code below).

In Squeak, when a class specifies a class (static) initialize method, this
method is invoked once the class is loaded in memory. We then special-
ize the class methods initialize of the classes Scamper and Wonderland to
invoke their class methods toolRegistration defined below:

Scamper class>>toolRegistration

PluginManager uniqueInstance
addPlugin:
(ToolPlugin

forFileSuffix: 'html'
openingBlock:

[:fileList |
self openOnUrl:

(fileList directory url ,
fileList fileName encodeForHTTP)]

menuLabelName: 'open in html browser')

Wonderland class>>toolRegistration

PluginManager uniqueInstance
addPlugin:

308CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

(ToolPlugin
forFileSuffix: 'wrl'
openingBlock:

[:fileList |
| scene |
scene := self new.
scene makeActorFromVRML: fileList fullName]

menuLabelName: 'open in Wonderland')

In Squeak, when a class is removed from the system, it receives the
message removeFromSystem. Here we then specialize this method for
every tool so that it can unregister itself.

Scamper class>>removeFromSystem

super removeFromSystem.
PluginManager uniqueInstance

removePlugin: [:plugin| plugin forFileSuffix = 'html']

Wonderland class>>removeFromSystem

super removeFromSystem.
PluginManager uniqueInstance

removePlugin: [:plugin| plugin forFileSuffix = 'wrl']

Step 4. The FileList object now has to use the ToolsManager to identify the
right plug-in object depending on the suffix of the selected file. Then if a
tool is available for the given suffix, it creates a menu item specifying that
the FileList has to be passed as argument of the action block associated
with the tool. In the case where there is no tool a special menu is created
whose action is to do nothing.

FileList>>itemsForFileEnding: suffix

| plugin |
plugin := PluginManager uniqueInstance

findToolFor: suffix ifAbsent: [nil].
↑ plugins isNil

ifFalse: [Menu label: (plugin menuLabelName)
actionBlock: (plugin openingBlock)
withParameter: self]

ifTrue: [ErrorMenu new
label: 'no tool available for the suffix ', suffix]

10.6. TRANSFORM CONDITIONALS INTO REGISTRATION 309

Tradeoffs

Pros

• By applying Transform Conditionals into Registration you obtain a
system which is both dynamic and flexible. New tools can be added
without impacting tool clients.

• Tool clients no longer have to check whether a given tool is avail-
able. The registration mechanism ensures you that the action can be
performed.

• The interaction protocol between tools and tool clients is now nor-
malized.

Cons

• You have to define two new classes, one for the object representing
tool representation (plugin) and one for the object managing the reg-
istered tools (plugin manager).

Difficulties

• While transforming a branch of the conditional into a plug-in object,
you will have to define an action associated with the tools via the
plug-in object. To ensure a clear separation and full dynamic regis-
tration, this action should be defined on the tool and not anymore
on the tool client. However, as the tool may need some information
from the tool client, the tool client should be passed to the tool as
a parameter when the action is invoked. This changes the protocol
between the tool and the tool client from a single invocation on the
tool client to a method invocation to the tool with an extra parame-
ter. This also implies that in some cases the tool client class have to
define new public or friend methods to allow the tools to access the
tool client right information.

• If each single conditional branch is associated only with a single tool,
only one plug-in object is needed. However, if the same tool can
be called in different ways we will have to create multiple plug-in
objects.

When the legacy solution is the solution

• If there is only a single tool client class, if all the tools are always
available, and if you will never add or remove a tool at run-time, a

310CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

conditional is simpler.

Related Patterns

Both Transform Conditionals into Registration and Transform Client
Type Checks eliminate conditional expressions that decide which method
should be invoked on which object. The key difference between the two
patterns is that Transform Client Type Checks moves behavior from the
client to the service provider, whereas Transform Conditionals into Reg-
istration deals with behavior that cannot be moved because it is imple-
mented by an external tool.

Script: Identifying simulated switches in C++

This Perl script searches the methods in C++ files and lists the occurrences
of statements used to simulate case statement with if then else i.e., match-
ing the following expression: elseXif where X can be replaced by , //... or
some white space including carriage return.

#!/opt/local/bin/perl
$/ = '::';
new record delim.,
$elseIfPattern = 'else[\s\n]*{?[\s\n]*if';
$linecount = 1;
while (<>) {

s/(//.*)//g; # remove C++ style comments
$lc = (split /\n/) -- 1; # count lines

if(/$elseIfPattern/) {
count # of lines until first
occurrence of "else if"
$temp = join("",$`,$&);
$l = $linecount + split(/\n/,$temp) -- 1;
count the occurrences of else--if pairs,
flag the positions for an eventual printout
$swc = s/(else)([\s\n]*{?[\s\n]*if)

/$1\n * HERE *$2/g;
printf "\n%s: Statement with

%2d else--if's, first at: %d",
$ARGV, $swc, $l;

}
$linecount += $lc;
if(eof) {

close ARGV;
$linecount = 0;

10.6. TRANSFORM CONDITIONALS INTO REGISTRATION 311

print "\n";
}

}

312CHAPTER 10. TRANSFORM CONDITIONALS TO POLYMORPHISM

Part IV

Appendices

313

Appendix A

Thumbnail patterns

There are many patterns that are not specifically concerned with reengi-
neering, but are still relevant to the reengineering process. In this chapter
we have listed only those patterns that are specifically referred to at some
point in this book. We have grouped them into the following three cate-
gories:

• Testing patterns. These patterns help you to focus your testing efforts.
Our principle source is a pattern language by DeLano and Rising
[DR98], though of course a vast literature is available on the subject.
Binder, for example, devotes an entire book to the subject [Bin99].

• Refactoring patterns. These patterns focus on individual refactoring
steps that you might applying during a reengineering project, or that
you might just as well apply during any forward engineering project.
Our principle sources are Fowler et al. [FBB+99], and the Roberts’
PhD thesis [Rob99].

• Design patterns. Very frequently the result of a reengineering opera-
tion is to put a particular design pattern into place. Here we remind
the reader of some of the most common design patterns that pop up
in a reengineering context. Our main source is, of course, the Design
Patterns book [GHJV95].

315

316 APPENDIX A. THUMBNAIL PATTERNS

A.1 Testing Patterns

A.1.1 Retest Persistent Problems

Problem: What areas of the system should receive concentrated testing,
irrespective of the features being implemented?

Solution: Keep a list of persistent problem areas and test cases to ver-
ify them, not just for resolving the current problems but also for use in
subsequent testing. Test these areas thoroughly, even if there are no new
features going into them. Retest regularly using, even one last time before
the release goes out of the door.

Source: Patterns for system testing [DR98].

Referenced from: Regression Test After Every Change [p. 201].

A.1.2 Test Fuzzy Features

Problem: How can possible problem areas of the system be pinpointed
so that the most problems can be found in the least amount of time?

Solution: Study the documentation available on the system. Look for
areas that seems ambiguous or ill-defined. Write test plans that cover these
areas more thoroughly and concentrate testing in these areas. If designers
can tell you all about a feature, it probably works. It’s what they can’t tell
you that needs attention during testing.

Source: Patterns for system testing [DR98].

Referenced from: Grow Your Test Base Incrementally [p. 159].

A.1.3 Test Old Bugs

Problem: What areas of the system should be targeted for testing so that
the most problems can be found in the least amount of time?

A.2. REFACTORINGS 317

Solution: Examine problem reports from previous releases to help select
test cases. Since it would be inefficient to test for all old problems, look
at problems reported after the last valid snapshot of the system. Catego-
rize problem reports to see if a trend is determined that could be used for
additional testing.

Source: Patterns for system testing [DR98].

Referenced from: Grow Your Test Base Incrementally [p. 159].

A.2 Refactorings

A.2.1 Encapsulate Field

Also Known As: Abstract Instance Variable [Rob99].

Intent There is a public field. Make it private and provide accessors.

Source: Refactoring: Improving the Design of Existing Code [FBB+99].

Referenced from: Eliminate Navigation Code [p. 253].

A.2.2 Extract Method

Intent You have a code fragment that can be grouped together. Turn the frag-
ment into a method whose name explains the purpose of the method.

Source: Refactoring: Improving the Design of Existing Code [FBB+99].

Referenced from: Refactor to Understand [p. 127], Visualize Code as
Dotplots [p. 233], Move Behavior Close to Data [p. 243]

A.2.3 Move Method

Intent A method is, or will be, using or used by more features of another class
than the class on which it is defined. Create a new method with a similar body

318 APPENDIX A. THUMBNAIL PATTERNS

in the class it uses most. Either turn the old method into a simple delegation, or
remove it altogether.

Source: Refactoring: Improving the Design of Existing Code [FBB+99].

Referenced from: Refactor to Understand [p. 127], Move Behavior Close
to Data [p. 243]

A.2.4 Rename Attribute

Intent Rename an instance variable and update all references to it.

Source: Practical Analysis for Refactoring [Rob99].

Referenced from: Refactor to Understand [p. 127].

A.2.5 Rename Method

Intent The name of a method does not reveal its purpose. Change the name of
the method.

Source: Refactoring: Improving the Design of Existing Code [FBB+99].

Referenced from: Refactor to Understand [p. 127]

A.2.6 Replace Conditional with Polymorphism

Intent You have a conditional that chooses different behavior depending on the
type of an object. Move each leg of the conditional to an overriding method in a
subclass. Make the original method abstract.

Source: Refactoring: Improving the Design of Existing Code [FBB+99].

Referenced from: Transform Client Type Checks [p. 281]

A.3. DESIGN PATTERNS 319

A.3 Design Patterns

A.3.1 Abstract Factory

Intent Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

Source: Design Patterns [GHJV95].

Referenced from: Look for the Contracts [p. 137], Transform Client Type
Checks [p. 281].

A.3.2 Adapter

Intent Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn’t otherwise because of incompat-
ible interfaces.

Source: Design Patterns [GHJV95].

Referenced from: Present the Right Interface [p. 207], Move Behavior
Close to Data [p. 243].

A.3.3 Facade

Intent Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

Source: Design Patterns [GHJV95].

Referenced from: Eliminate Navigation Code [p. 253], Split Up God
Class [p. 263].

A.3.4 Factory Method

Intent Define an interface for creating an object, but let subclasses decide which
class to instantiate. Factory Method lets a class defer instantiation to subclasses.

320 APPENDIX A. THUMBNAIL PATTERNS

Source: Design Patterns [GHJV95].

Referenced from: Look for the Contracts [p. 137]

A.3.5 Flyweight

Intent Use sharing to support large numbers of fine-grained objects efficiently.

Source: Design Patterns [GHJV95].

Referenced from: Speculate about Design [p. 97]

A.3.6 Null Object

Intent A Null Object provides a surrogate for another object that shares the
same interface but does nothing. Thus, the Null Object encapsulates the imple-
mentation decisions of how to do nothing and hides those details from its collabo-
rators

Source: Null Object [Woo98].

Referenced from: Introduce Null Object [p. 299].

A.3.7 Quantity

Problem: Representing a value such as 6 feet or $5.

Solution: Use a quantity type that includes both the amount and the
unit. Currencies are a kind of unit.

Source: Analysis Patterns: Reusable Objects Models [Fow97].

Referenced from: Analyze the Persistent Data [p. 87].

A.3. DESIGN PATTERNS 321

A.3.8 Singleton

Intent Ensure a class only has one instance, and provide a global point of access
to it.

Source: Design Patterns [GHJV95].

Referenced from: Read all the Code in One Hour [p. 53].

A.3.9 State

Intent Allow an object to alter its behavior when its internal state changes. The
object will appear to change its class.

Source: Design Patterns [GHJV95].

Referenced from: Factor out State [p. 291].

A.3.10 State Patterns

Intent The State Patterns pattern language refines and clarifies the State Pat-
tern.

Source: State Patterns [DA97].

Referenced from: Factor out State [p. 291].

A.3.11 Strategy

Intent Define a family of algorithms, encapsulate each one in a separate class,
and define each class with the same interface so they can be interchangeable. Strat-
egy lets the algorithm vary independently from clients that use it.

Source: Design Patterns [GHJV95].

Referenced from: Factor out Strategy [p. 295].

322 APPENDIX A. THUMBNAIL PATTERNS

A.3.12 Template Method

Intent Define the skeleton of an algorithm in an operation, deferring some steps
to subclasses. Template Method lets subclasses redefine certain steps of an algo-
rithm without changing the algorithm’s structure.

Source: Design Patterns [GHJV95].

Referenced from: Look for the Contracts [p. 137].

A.3.13 Visitor

Intent Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing the classes
of the elements on which it operates.

Source: Design Patterns [GHJV95].

Referenced from: Move Behavior Close to Data [p. 243].

Bibliography

[ABW98] Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The De-
sign Patterns Smalltalk Companion. Addison Wesley, 1998.

[Arn92] Robert S. Arnold. Software Reengineering. IEEE Computer
Society Press, Los Alamitos CA, 1992.

[Bak92] Brenda S. Baker. A program for identifying duplicated code.
Computing Science and Statistics, 24:49–57, 1992.

[BCK98] Len Bass, Paul Clements, and Rick Kazman. Software Archi-
tecture in Practice. Addison Wesley, 1998.

[BDS+00] Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber,
and Jeff Sutherland. Scrum: A pattern language for hyper-
productive software development. In Neil Harrison, Brian
Foote, and Hans Rohnert, editors, Pattern Languages of Pro-
gram Design 4, pages 637–652. Addison Wesley, 2000.

[BE96] Timothy Ball and Stephen Eick. Software visualization in the
large. IEEE Computer, 29(4):33–43, 1996.

[Bec97] Kent Beck. Smalltalk Best Practice Patterns. Prentice-Hall, 1997.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change.
Addison Wesley, 2000.

[BF01] Kent Beck and Martin Fowler. Planning Extreme Programming.
Addison Wesley, 2001.

[BG98] Kent Beck and Erich Gamma. Test infected: Programmers
love writing tests. Java Report, 3(7):51–56, 1998.

[BH95] Olin Bray and Michael M. Hess. Reengineering a configura-
tion management system. IEEE Software, 12(1):55–63, January
1995.

323

324 BIBLIOGRAPHY

[Big89] Ted J. Biggerstaff. Design recovery for maintenance and
reuse. IEEE Computer, 22:36–49, October 1989.

[Bin99] Robert V. Binder. Testing Object-Oriented Systems: Models, Pat-
terns, and Tools. Object Technology Series. Addison Wesley,
1999.

[BLM98] M. Blaha, D. LaPlant, and E. Marvak. Requirements for
repository software. In Proceedings of WCRE ’98, pages 164–
173. IEEE Computer Society, 1998. ISBN: 0-8186-89-67-6.

[BMF99] Simon Bennett, Steve McRobb, and Ray Farmer. Object-
Oriented System Analysis and Design using UML. McGraw Hill,
1999.

[BMMM98] William J. Brown, Raphael C. Malveau, Hays W. McCormick,
III, and Thomas J. Mowbray. AntiPatterns: Refactoring Soft-
ware, Architectures, and Projects in Crisis. John Wiley Press,
1998.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stad. Pattern-Oriented Software Ar-
chitecture — A System of Patterns. John Wiley Press, 1996.

[BMW93] Ted J. Biggerstaff, Bharat G. Mittbander, and Dallas Webster.
The concept assignment problem in program understanding.
In Proceedings of the 15th international conference on Software En-
gineering (ICSE 1993). IEEE Computer, 1993.

[BMW94] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Web-
ster. Program understanding and the concept assignment
problem. Communications of the ACM, 37(5):72–82, May 1994.

[Boe88] Barry W. Boehm. A spiral model of software development
and enhancement. IEEE Computer, 21(5):61–72, 1988.

[Boo94] Grady Booch. Object Oriented Analysis and Design with Ap-
plications. The Benjamin Cummings Publishing Co. Inc., 2nd
edition, 1994.

[BP94] Jack Barnard and Art Price. Managing code inspection infor-
mation. IEEE Software, 11(2):59–69, March 1994.

[Bro75] Frederick P. Brooks. The Mythical Man-Month. Addison Wes-
ley, Reading, Mass., 1975.

[Bro87] Frederick P. Brooks. No silver bullet. IEEE Computer,
20(4):10–19, April 1987.

BIBLIOGRAPHY 325

[Bro96] Kyle Brown. Design reverse-engineering and automated de-
sign pattern detection in Smalltalk. Master’s thesis, North
Carolina State University, 1996.

[BS95] Michael L. Brodie and Michael Stonebraker. Migrating Legacy
Systems. Morgan Kaufmann, 1995.

[BS97] David Bellin and Susan Suchman Simone. The CRC Card Book.
Addison Wesley, 1997.

[BW96] Kyle Brown and Bruce G. Whitenack. Crossing chasms: A
pattern language for object-rdbms integration. In John M.
Vlissides, James O. Coplien, and Norman L. Kerth, editors,
Pattern Languages of Program Design 2, pages 227–238. Addi-
son Wesley, 1996.

[CHR01] Stephen Cook, Rachel Harrison, and Brian Ritchie. Assess-
ing the evolution of financial management information sys-
tems. In ECOOP 2001 Workshop Reader, volume 2323 of LNCS.
Springer-Verlag, 2001.

[CI92] Elliot J. Chikofsky and James H. Cross II. Reverse engineer-
ing and design recovery: A taxonomy. In Robert S. Arnold,
editor, Software Reengineering, pages 54–58. IEEE Computer
Society Press, 1992.

[Coc93] Alistair Cockburn. The impact of object-orientation on ap-
plication development. IBM Systems Journal, 32(3):420–444,
March 1993.

[Con68] Melvin E. Conway. How do committees invent? Datamation,
14(4):28–31, April 1968.

[Cop92] James O. Coplien. Advanced C++: Programming Styles and Id-
ioms. Addison Wesley, 1992.

[Cop95] James O. Coplien. A development process generative pattern
language. In James O. Coplien and Douglas Schmidt, editors,
Pattern Languages of Program Design, pages 183–237. Addison
Wesley, 1995.

[Cor89] Thomas A. Corbi. Program understanding: Challenge for the
1990’s. IBM Systems Journal, 28(2):294–306, 1989.

[CRR96] Debra Cameron, Bill Rosenblatt, and Eric Raymond. Learning
GNU Emacs. O’Reilly, 1996.

326 BIBLIOGRAPHY

[DA97] Paul Dyson and Bruse Anderson. State patterns. In Robert
Martin, Dirk Riehle, and Frank Buschmann, editors, Pattern
Languages of Program Design 3. Addison Wesley, 1997.

[Dav95] Alan Mark Davis. 201 Principles of Software Development.
McGraw-Hill, 1995.

[DD99] Serge Demeyer and Stéphane Ducasse. Metrics, do they re-
ally help? In Jacques Malenfant, editor, Proceedings of Lan-
guages et Modèles à Objets (LMO’99), pages 69–82. HERMES
Science Publications, Paris, 1999.

[DDL99] Serge Demeyer, Stéphane Ducasse, and Michele Lanza. A
hybrid reverse engineering platform combining metrics and
program visualization. In Francoise Balmas, Mike Blaha, and
Spencer Rugaber, editors, Proceedings of 6th Working Confer-
ence on Reverse Engineering (WCRE ’99). IEEE Computer Soci-
ety, October 1999.

[DDN00] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz.
Finding refactorings via change metrics. In Proceedings of 15th
International Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA ’00), pages 166–
178, New York NY, 2000. ACM Press. Also appeared in ACM
SIGPLAN Notices 35 (10).

[DG97] Serge Demeyer and Harald Gall, editors. Proceedings of the
ESEC/FSE Workshop on Object-Oriented Re-engineering. TUV-
1841-97-10. Technical University of Vienna — Information
Systems Institute — Distributed Systems Group, September
1997.

[DL99] Tom DeMarco and Timothy Lister. Peopleware, Productive
Projects and Teams. Dorset House, 2nd edition, 1999.

[DR98] David E. DeLano and Linda Rising. Patterns for system test-
ing. In Robert Martin, Dirk Riehle, and Frank Buschmann,
editors, Pattern Languages of Program Design 3, pages 503–527.
Addison-Welsey, 1998.

[DRD99] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. A
language independent approach for detecting duplicated
code. In Hongji Yang and Lee White, editors, Proceedings
of 15th IEEE International Conference on Software Maintenance
(ICSM’99), pages 109–118. IEEE Computer Society, Septem-
ber 1999.

BIBLIOGRAPHY 327

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and
Don Roberts. Refactoring: Improving the Design of Existing
Code. Addison Wesley, 1999.

[FH79] R.K. Fjeldstad and W. T. Hamlen. Application program main-
tenance study: report to our respondents. In Proceedings of
GUIDE 48. The Guide Corporation, 1979.

[FMvW97] Gert Florijn, Marco Meijers, and Pieter van Winsen. Tool
support for object-oriented patterns. In Mehmet Aksit and
Satoshi Matsuoka, editors, Proceedings ECOOP ’97, volume
1241 of LNCS, pages 472–495, Jyvaskyla, Finland, June 1997.
Springer-Verlag.

[Fow97] Martin Fowler. Analysis Patterns: Reusable Objects Models. Ad-
dison Wesley, 1997.

[FP96] Norman Fenton and Shari Lawrence Pfleeger. Software Met-
rics: A Rigorous and Practical Approach. International Thomson
Computer Press, London, UK, second edition, 1996.

[Fro94] Stuart Frost. Modelling for the rdbms legacy. Object Magazine,
pages 43–51, September 1994.

[FY00] Brian Foote and Joseph W. Yoder. Big ball of mud. In N. Har-
rison, B. Foote, and H. Rohnert, editors, Pattern Languages of
Program Design, volume 4, pages 654–692. Addison Wesley,
2000.

[GG93] Tom Gilb and Dorothy Graham. Software Inspection. Addison
Wesley, 1993.

[GHJ98] Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of
logical coupling based on product release history. In Proceed-
ings International Conference on Software Maintenance (ICSM
’98), pages 190–198, Los Alamitos CA, 1998. IEEE Computer
Society Press.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley, Reading, Mass., 1995.

[Gla97] Robert L. Glass. Building Quality Software. Prentice-Hall, 1997.

[GR95] Adele Goldberg and Kenneth S. Rubin. Succeeding With Ob-
jects: Decision Frameworks for Project Management. Addison
Wesley, Reading, Mass., 1995.

328 BIBLIOGRAPHY

[GW99] Harald Gall and Johannes Weidl. Object-model driven
abstraction-to-code mapping. In Proceedings of the 2nd Work-
shop on Object-Oriented Reengineering (WOOR 1999). Techni-
cal University of Vienna — Technical Report TUV-1841-99-13,
1999.

[Har96] Neil B. Harrison. Organizational patterns for teams. In
John M. Vlissides, James O. Coplien, and Norman L. Kerth,
editors, Pattern Languages of Program Design 2, pages 345–352.
Addison Wesley, 1996.

[HEH+96] J.-L. Hainaut, V. Englebert, J. Henrard, J.-M. Hick, and
D. Roland. Database reverse engineering: From requirements
to CARE tools. Automated Software Engineering, 3(1-2), June
1996.

[Hel95] Jonathan I. Helfman. Dotplot patterns: a literal look at pat-
tern languages. TAPOS, 2(1):31–41, 1995.

[IKM+97] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and
Alan Kay. Back to the future: The story of Squeak, A prac-
tical Smalltalk written in itself. In Proceedings OOPSLA ’97,
ACM SIGPLAN Notices, pages 318–326. ACM Press, Novem-
ber 1997.

[JAH01] Ron Jeffries, Ann Anderson, and Chet Hendrickson. Extreme
Programming Installed. Addison Wesley, 2001.

[JC00] Daniel Jackson and John Chapin. Redesigning air traffic con-
trol: An exercise in software design. IEEE Software, 17(3):63–
70, May 2000.

[JCJO92] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gun-
nar Overgaard. Object-Oriented Software Engineering — A Use
Case Driven Approach. Addison Wesley/ACM Press, Reading,
Mass., 1992.

[JGJ97] Ivar Jacobson, Martin Griss, and Patrik Jonsson. Software
Reuse. Addison Wesley/ACM Press, 1997.

[JGR99] Mehdi Jazayeri, Harald Gall, and Claudio Riva. Visualizing
Software Release Histories: The Use of Color and Third Di-
mension. In Proceedings of ICSM ’99 (International Conference
on Software Maintenance), pages 99–108. IEEE Computer Soci-
ety Press, 1999.

BIBLIOGRAPHY 329

[JS96] Dean F. Jerding and John T. Stasko. The information mural:
Increasing information bandwidth in visualizations. Techni-
cal Report GIT-GVU-96-25, Georgia Institute of Technology,
October 1996.

[JSZ97] Jens. H. Jahnke, Wilhelm. Schäfer, and Albert. Zündorf.
Generic fuzzy reasoning nets as a basis ofr reverse engineer-
ing relational database applications. In Proceedings of ES-
EC/FSE ’97, number 1301 in LNCS, pages 193–210, 1997. in-
proceedings.

[KC98a] Rick Kazman and S. Jeromy Carriere. View extraction and
view fusion in architectural understanding. In Proceedings
of the 5th International Conference on Software Reuse, Victoria,
B.C., 1998.

[KC98b] Wolfgang Keller and Jens Coldewey. Accessing relational
databases: A pattern language. In Robert Martin, Dirk
Riehle, and Frank Bushmann, editors, Pattern Languages of
Program Design 3, pages 313–343. Addison Wesley, 1998.

[KC99] Rick Kazman and S. J. Carriere. Playing detective: Recon-
structing software architecture from available evidence. Au-
tomated Software Engineering, April 1999.

[Kel00] Wolfgang Keller. The bridge to the new town — a legacy
system migration pattern. In Proceedings of EuroPLoP 2000,
2000.

[Knu92] Donald E. Knuth. Literate Programming. Stanford, California:
Center for the Study of Language and Information, 1992.

[Lan99] Michele Lanza. Combining Metrics and Graphs for Object
Oriented Reverse Engineering. Diploma Thesis, University
of Bern, October 1999.

[LB85] Manny Lehman and Les Belady. Program Evolution: Processes
of Software Change. London Academic Press, London, 1985.

[Lea96] Doug Lea. Concurrent Programming in Java, Design Principles
and Patterns. The Java Series. Addison Wesley, 1996.

[LHR88] Karl J. Lieberherr, Ian M. Holland, and Arthur Riel. Object-
oriented programming: An objective sense of style. In Pro-
ceedings OOPSLA ’88, ACM SIGPLAN Notices, volume 23,
pages 323–334, November 1988.

330 BIBLIOGRAPHY

[LK94] Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics:
A Practical Guide. Prentice-Hall, 1994.

[Lov93] Tom Love. Object Lessons — Lessons Learned in Object-Oriented
Development Projects. SIGS Books, New York, 1993.

[LPM+97] Bruno Laguë, Daniel Proulx, Ettore M. Merlo, Jean Mayrand,
and John Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In Pro-
ceedings of ICSM (International Conference on Software Mainte-
nance). IEEE, 1997.

[Mar82] Tom De Marco. Controlling Software Projects. Yourdon Press,
1982.

[Mey96] Scott Meyers. More Effective C++. Addison Wesley, 1996.

[Mey98] Scott Meyers. Effective C++. Addison Wesley, second edition,
1998.

[MJS+00] Hausi A. Müller, Jens H. Janhke, Dennis B. Smith, Margaret-
Anne Storey, Scott R. Tilley, and Kenny Wong. Reverse engi-
neering: A roadmap. In A. Finkelstein, editor, The Future of
Software Engineering 2000. ACM Press, 2000.

[MLM96] Jean Mayrand, Claude Leblanc, and Ettore M. Merlo. Ex-
periment on the automatic detection of function clones in a
software system using metrics. In International Conference on
Software Maintenance (ICSM), pages 244–253, 1996.

[MN97] Gail C. Murphy and David Notkin. Reengineering with re-
flexion models: A case study. IEEE Computer, 8:29–36, 1997.

[Nes88] Paolo Nesi. Managing OO project better. IEEE Software, July
1988.

[Nie99] Jakob Nielsen. Usability Engineering. Morgan Kaufmann,
1999.

[O’C00] Alan O’Callaghan. Patterns for architectural praxis. In Pro-
ceedings of EuroPLoP 2000, 2000.

[ODF99] Alan O’Callaghan, Ping Dai, and Ray Farmer. Patterns for
change — sample patterns from the adaptor pattern lan-
guage. In Proceedings of EuroPLoP 1999, 1999.

[PB94] William J. Premerlani and Michael R. Blaha. An approach for
reverse engineering of relational databases. Communications
of the ACM, 37(5):42–49, May 1994.

BIBLIOGRAPHY 331

[PK82] J. Pustell and F. Kafatos. A high speed, high capacity homol-
ogy matrix: Zooming through SV40 and polyoma. Nucleid
Acids Research, 10(15):4765–4782, 1982.

[PK01] Joseph Pelrine and Alan Knight. Mastering ENVY/Developer.
Cambridge University Press, 2001.

[Pre94] Roger S. Pressman. Software Engineering: A Practitioner’s Ap-
proach. McGraw-Hill, 1994.

[RBCM91] D.J. Robson, K. H. Bennet, B. J. Cornelius, and M. Munro. Ap-
proaches to program comprehension. Journal of Systems and
Software, 14:79–84, February 1991. Republished in [Arno92a].

[RBJ97] Don Roberts, John Brant, and Ralph E. Johnson. A refactor-
ing tool for Smalltalk. Theory and Practice of Object Systems
(TAPOS), 3(4):253–263, 1997.

[RD99] Tamar Richner and Stéphane Ducasse. Recovering high-
level views of object-oriented applications from static and
dynamic information. In Hongji Yang and Lee White, edi-
tors, Proceedings of 15th IEEE International Conference on Soft-
ware Maintenance (ICSM’99), pages 13–22, Los Alamitos CA,
September 1999. IEEE Computer Society Press.

[Ree96] Trygve Reenskaug. Working with Objects: The OOram Software
Engineering Method. Manning Publications, 1996.

[RG98] Dirk Riehle and Thomas Gross. Role model based framework
design and integration. In Proceedings OOPSLA ’98, ACM
SIGPLAN Notices, pages 117–133, October 1998.

[Rie96] Arthur Riel. Object-Oriented Design Heuristics. Addison Wes-
ley, Boston MA, 1996.

[Ris00] Linda Rising. Customer interaction patterns. In Neil Har-
rison, Brian Foote, and Hans Rohnert, editors, Pattern Lan-
guages of Program Design 4, pages 585–609. Addison Wesley,
2000.

[Rob99] Donald Bradley Roberts. Practical Analysis for Refactoring.
PhD thesis, University of Illinois, 1999.

[RS89] Trygve Reenskaug and Anna Lise Skaar. An environment for
literate Smalltalk programming. In Proceedings OOPSLA ’89,
ACM SIGPLAN Notices, volume 24, pages 337–346, October
1989.

332 BIBLIOGRAPHY

[RW98] Spencer Rugaber and Jim White. Restoring a legacy: Lessons
learned. IEEE Software, 15(4):28–33, July 1998.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspec-
tives on an Emerging Discipline. Prentice-Hall, 1996.

[Sha97] Alec Sharp. Smalltalk by Example. McGraw-Hill, 1997.

[SLMD96] Patrick Steyaert, Carine Lucas, Kim Mens, and Theo
D’Hondt. Reuse Contracts: Managing the Evolution of
Reusable Assets. In Proceedings of OOPSLA ’96 (Interna-
tional Conference on Object-Oriented Programming, Systems,
Languages, and Applications), pages 268–285. ACM Press, 1996.

[Sne99] Harry M. Sneed. Risks involved in reengineering projects. In
Proceedings of the 6th Working Conference on Reverse Engineering
(WCRE). IEEE, 1999.

[Som96] Ian Sommerville. Software Engineering. Addison Wesley, fifth
edition, 1996.

[SP98] Perdita Stevens and Rob Pooley. System reengineering pat-
terns. In Proceedings of FSE-6. ACM-SIGSOFT, 1998.

[SRMK99] Reinhard Schauer, Sébastian Robitaille, Francois Martel, and
Rudolf Keller. Hot-Spot Recovery in Object-Oriented Soft-
ware with Inheritance and Composition Template Methods.
In Proceedings of ICSM ’99 (International Conference on Software
Maintenance). IEEE Computer Society Press, 1999.

[SSRB00] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture Volume 2
— Networked and Concurrent Objects. John Wiley and Sons,
2000.

[SW98] Geri Schneider and Jason P. Winters. Applying Use Cases. Ad-
dison Wesley, 1998.

[Tay00] Paul Taylor. Capable, productive, and satisfied: Some organi-
zational patterns for protecting productive people. In N. Har-
rison, B. Foote, and H. Rohnert, editors, Pattern Languages of
Program Design, volume 4, pages 611–636. Addison Wesley,
2000.

[Tho98] Rob Thomsett. The year 2000 bug: a forgotten lesson. IEEE
Software, 15(4):91–93,95, July 1998.

BIBLIOGRAPHY 333

[WBWW90] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren Wiener.
Designing Object-Oriented Software. Prentice-Hall, 1990.

[WG98] Johannes Weidl and Harald Gall. Binding object models to
source code: An approach to object-oriented rearchitecting.
In Proceedings of the 22nd Computer Software and Application
Conference (COMPSAC 1998). IEEE Computer Society Press,
1998.

[Woo98] Bobby Woolf. Null object. In Robert Martin, Dirk Riehle,
and Frank Buschmann, editors, Pattern Languages of Program
Design 3, pages 5–18. Addison Wesley, 1998.

[WTMS95] Kenny Wong, Scott R. Tilley, Hausi A. Müller, and Margaret-
Anne D. Storey. Structural redocumentation: A case study.
IEEE Software, 12(1):46–54, January 1995.

[Wuy98] Roel Wuyts. Declarative reasoning about the structure object-
oriented systems. In Proceedings of the TOOLS USA ’98 Con-
ference, pages 112–124. IEEE Computer Society Press, 1998.

[You97] Edward Yourdon. Death March. Prentice-Hall, 1997.

Index

Abstract Factory (Pattern), 139, 284, 319
Abstract Instance Variable, 317
Ada, 40, 274, 282
Adapter (Pattern), 13, 208, 247, 319
ADAPTOR pattern language, 208, 212
Agree on Maxims (Pattern), 20, 23, 43
Alexander, Christopher, 12
Always Have a Running Version

(Pattern), 13, 152, 157, 183,
193, 199–201

Analyze the Persistent Data (Pattern),
59, 67, 85–87, 96, 320

Appoint a Navigator (Pattern), 20, 25,
164, 193

architecture, 19, 25, 29, 99
Arranging the Furniture, 130
AST Matching, 255

Beck, Kent, 6, 27, 58, 223
Belady, Les, xiii, 219
Bennett, Simon, 74
Big Ball of Mud, 197, 267
Binder, Robert, 149, 315
black box testing, 160, 174
Blaha, Michael, 95
Boehm, Barry, 8
Brant, John, 130
Bridge to the New Town, 203
Brodie, Michael, 205
Brooks, Frederick, 117, 197
bug reports, 46
Build Confidence (Pattern), 20, 31, 37,

182, 183, 185, 187, 189, 190,
192, 200, 201, 205

business model, 23

C++, 40, 58, 130, 212, 232, 247, 274, 281,
285, 299, 310

Chapin, John, 66
Chat with the Maintainers (Pattern), 42,

45, 55, 59, 67, 71, 76, 82, 144
Chicken Little, 191, 192
Chikofsky, Elliot, 8, 11
class abuse, 11
COBOL, 232
Cobol, 130
Cockburn, Alistair, 103
code reviews, 54
code smells, 6, 53
CodeCrawler, 104, 115
coding idioms, 54
Compare Code Mechanically (Pattern),

225, 227, 261
Conserve Familiarity (Pattern), 183,

186, 219, 220
Continuous Integration, 200
Conway’s law, 49
Conway, Melvin, 49
Cook, Stephen, 51
Coplien, James, 187
Cross, James, 8, 11

Daimler-Benz, xiv, xvii
DALI, 105
data bridge, 203
data container, 239, 241
database, 87

schema, 87
DATRIX, 232
Davis, Alan, 157, 202, 222
De Marco, Tom, 49, 114
debugger, 133
DeLano, David, 315
Deprecate Obsolete Interfaces (Pattern),

183, 208, 212, 213, 215, 245,
266

334

INDEX 335

Deprecation, 215, 217
DESEL project, 51
design drift, xiv
Design Patterns, xv, 315
DESIRE, 105
Detailed Model Capture (Pattern

cluster), 14, 86, 105, 115,
117–119

Detecting Duplicated Code (Pattern
cluster), 16, 224, 225

Distinguish Public from Published
Interface (Pattern), 183, 209,
211, 213

Do a Mock Installation (Pattern), 47, 51,
59, 72, 77, 79, 82

Do it, then do it right, then do it fast,
222

Do the simplest thing that will work, 37
documentation, 61

insufficient, 10
obsolete, 4

dotplot, 236
Dup, 238
duplicated code, 6, 10, 227
duplicated functionality, 10
Duploc, 238

Eiffel, 124
Eliminate Navigation Code (Pattern),

242, 244, 253, 257, 259, 261,
317, 319

Encapsulate Field (Pattern), 251, 317
encapsulation

violation of, 11, 253
Engage Customers, 185
Envy, 81
ESPRIT, xiv, xvii
EuroPLoP, xvii
evolutionary prototype, 195
exploratory prototype, 195
Extract Method (Pattern), 128, 130, 225,

238, 244, 293, 296, 317
Extreme Programming, 37, 157, 190, 202

Facade (Pattern), 13, 257, 265, 319
Factor out State (Pattern), 270, 271, 280,

291, 297, 321

Factor out Strategy (Pattern), 270, 271,
280, 295, 297, 298, 321

Factory Method (Pattern), 139, 319
FAMOOS, xiv, xv, xvii, 40, 58, 66, 67,

75, 81, 115, 130, 238
First Contact (Pattern cluster), 14, 42,

83, 84, 87, 107, 117
Fix Problems, Not Symptoms (Pattern),

20, 25, 30, 31, 33
Flyweight (Pattern), 102, 320
Foote, Brian, 197, 267
forces, see pattern, forces
foreign key, 91
forward engineering

definition, 8
Fowler, Martin, 11, 27, 223, 299, 315
frameworks, xiv
FZI, xiv, xvii

God Class, 239, 241, 263
Goldberg, Adele, 23, 75
Grow Your Test Base Incrementally

(Pattern), 150, 157, 159, 178,
193, 201, 316, 317

hook method, 139, 166

IEEE, 11
If It Ain’t Broke, Don’t Fix It (Pattern),

20, 33, 35
inheritance

missing, 11
misuse of, 11

Initial Understanding (Pattern cluster),
14, 43, 86, 117, 137, 141

Interview During Demo (Pattern), 42,
47, 51, 55, 59, 63, 67, 69, 71,
76, 79, 81, 82, 97, 99, 135, 144

Introduce Null Object (Pattern), 270,
271, 289, 299, 320

Involve the Users (Pattern), 20, 31, 37,
43, 182, 183, 185, 187, 190, 220

Jackson, Daniel, 66
Java, 6, 139, 211, 215, 248, 255, 259, 274,

282, 299
Javadoc, 57
JUnit, 156, 163, 164

336 INDEX

Keep It Simple (Pattern), 21, 37, 228
Keep the Data — Toss the Code, 203
Keller, Wolfgang, 205
Konigsberg, Allen, 57

Law of Conservation of Familiarity, 220
Law of Demeter, 240, 241, 253, 261
Law of Increasing Complexity, 5
layering

improper, 10
Learn from the Past (Pattern), 30, 120,

140, 141
legacy software, 3
legacy systems, xiv
Lehman, Manny, xiii, 219
literate programming, 124
Look for the Contracts (Pattern), 92, 96,

120, 135, 137, 140, 144, 319,
320, 322

Love, Tom, 197

maintenance, 46
maintenance costs, 23
Make a Bridge to the New Town

(Pattern), 33, 183, 190, 193,
197, 203

maxims, 23
MediaGeniX, 125
meetings, 27
metrics, 107, 142
Migrate Systems Incrementally

(Pattern), 31, 152, 157, 182,
183, 186, 187, 191, 205, 220

Migrating Legacy Systems, 192
Migration Strategies (Pattern cluster),

16, 152
misplaced operations, 11
modularity

lack of, 10
Most Valuable First (Pattern), 20, 23, 25,

29, 33, 181, 185, 193
Move Behavior Close to Data (Pattern),

225, 238, 241–244, 250, 251,
253, 256, 266, 317–319, 322

Move Method (Pattern), 244, 317
mural visualization, 236

navigator, 25

Nielsen, Jakob, 74
Nokia, xiv, xvii
Nortel, 50
Null Object (Pattern), 270, 271, 299, 320

O’Callaghan, Alan, 208

pattern
forces, xvi
language, xvi, 14
tradeoffs, xvi

Perl, 274, 310
Planning Game, 30, 187
Pooley, Rob, 217
Present the Right Interface (Pattern),

33, 183, 192, 193, 196,
207–209, 213, 267, 268, 319

Pressman, Roger, 65
Prototype the Target Solution (Pattern),

183, 190, 192, 195, 220
Published Interface, 211, 212
Python, 237

Quantity (Pattern), 100, 320

Read all the Code in One Hour
(Pattern), 42, 47, 51, 53, 58,
59, 63, 67, 72, 76, 81, 97, 321

Record Business Rules as Tests
(Pattern), 76, 120, 134, 152,
160, 161, 173, 175, 178

Redistribute Responsibilities (Pattern
cluster), 16, 115

reengineering, 10
continuous, 7, 12
definition, 8

reengineering patterns, 12, 13
form, 14

Refactor to Understand (Pattern), 14,
118, 120, 125, 127–131, 140,
180, 222, 317, 318

refactoring, 128
definition, 11

Refactoring Browser, 58, 129, 255
Regression Test After Every Change

(Pattern), 152, 183, 192, 193,
200–202, 265, 316

Rename Attribute (Pattern), 128, 318

INDEX 337

Rename Method (Pattern), 128, 318
Replace Conditional with

Polymorphism (Pattern), 289,
318

restructuring
definition, 11

Retest Persistent Problems (Pattern),
152, 202, 316

reverse engineering, 9
definition, 8

Rewrite Rule Editor, 255
Riel, Arthur, 95, 251, 267
Rigi, 105
Rising, Linda, 315
Roberts, Don, 130
Roberts, Donald, 315
RT-100, 50
RTTI, 281
Rubin, Kenny, 23, 75
Rugaber, Spencer, 50

Sema, xvii
Sema Group, xiv
Semantic Wrapper, 207, 208, 263
Setting Direction (Pattern cluster), 14,

20, 181
Singleton (Pattern), 54, 320
Skim the Documentation (Pattern), 42,

47, 51, 55, 59, 61, 67, 72, 76,
97, 98

Small Releases, 190
Smalltalk, 58, 81, 144, 177, 212, 247, 255,

275, 282, 301
Sneed, Harry, 130
software maintenance, 11

definition, 11
software reuse, 7
Speak to the Round Table (Pattern), 20,

27, 84
Speculate about Design (Pattern), 67,

76, 85, 86, 90, 92, 96, 97, 104,
143, 320

spiral development lifecycle, 8
Split Up God Class (Pattern), 33, 242,

263, 267, 319
SQL, 88, 91–93
Squeak, 125, 305, 307

stakeholder, 29, 33
State (Pattern), 270, 271, 291, 321
State Patterns (Pattern language), 291,

321
Step Through the Execution (Pattern),

120, 133, 135, 140
Stevens, Perdita, 217
Stonebraker, Michael, 205
Strategy (Pattern), 270, 271, 295, 297,

321
Study the Exceptional Entities

(Pattern), 59, 85, 86, 105, 107
SUnit, 163
Sweeping it Under the Rug, 207

Template Method (Pattern), 139, 321,
322

Test Fuzzy Features (Pattern), 152, 160,
316

Test Old Bugs (Pattern), 152, 160, 316
Test the Interface, Not the

Implementation (Pattern),
120, 144, 152, 158, 160, 161,
171, 174, 193

Test-Driven development, 202
testing, 149
tests

missing, 5
Tests: Your Life Insurance

(Pattern cluster), 14, 54, 77, 96, 105,
120

The Blob, 263
The Law of Continuing Change, xiii
The Law of Increasing Complexity, xiii
Thomsett, Rob, 49
Throwaway Code, 197
throwaway prototype, 195
Tie Code and Questions (Pattern), 118,

121, 123, 125, 129, 131, 134,
180

tradeoffs, see pattern, tradeoffs
Transform Client Type Checks

(Pattern), 244, 270, 271, 280,
281, 284, 289, 310, 318, 319

Transform Conditionals into
Registration (Pattern), 270,
271, 280, 289, 303, 309, 310

338 INDEX

Transform Conditionals to
Polymorphism (Pattern
cluster), 16, 115, 225, 237, 238,
270

Transform Self Type Checks (Pattern),
270, 271, 273, 277, 280–282,
291

UML
class diagram, 87, 92, 105

unit tests, 54
University of Bern, xiv, xvii
UNIX, 274
Unix, 141
Use a Testing Framework (Pattern),

150, 161, 163
Use Profiler Before Optimizing

(Pattern), 184, 221, 222

violation of encapsulation, see
encapsulation, violation of

Visitor (Pattern), 247, 322
Visualize Code as Dotplots (Pattern),

225, 233, 317

white box testing, 174
White, Jim, 50
Wong, Kenny, 66
Woolf, Bobby, 301
Write Tests to Enable Evolution

(Pattern), 150, 153, 157, 172,
181, 183, 193, 202

Write Tests to Understand (Pattern),
120, 128, 129, 131, 135, 152,
162, 178, 179

XP, see Extreme Programming

Yoder, Joseph, 197, 267
Yourdon, Edward, 186

	Foreword
	Preface
	I Introduction
	Reengineering Patterns
	Why do we Reengineer?
	The Reengineering Lifecycle
	Reengineering Patterns
	The Form of a Reengineering Pattern
	A Map of Reengineering Patterns

	II Reverse Engineering
	Setting Direction
	Agree on Maxims
	Appoint a Navigator
	Speak to the Round Table
	Most Valuable First
	Fix Problems, Not Symptoms
	If It Ain't Broke, Don't Fix It
	Keep It Simple

	First Contact
	Chat with the Maintainers
	Read all the Code in One Hour
	Skim the Documentation
	Interview During Demo
	Do a Mock Installation

	Initial Understanding
	Analyze the Persistent Data
	Speculate about Design
	Study the Exceptional Entities

	Detailed Model Capture
	Tie Code and Questions
	Refactor to Understand
	Step Through the Execution
	Look for the Contracts
	Learn from the Past

	III Reengineering
	Tests: Your Life Insurance!
	Write Tests to Enable Evolution
	Grow Your Test Base Incrementally
	Use a Testing Framework
	Test the Interface, Not the Implementation
	Record Business Rules as Tests
	Write Tests to Understand

	Migration Strategies
	Involve the Users
	Build Confidence
	Migrate Systems Incrementally
	Prototype the Target Solution
	Always Have a Running Version
	Regression Test After Every Change
	Make a Bridge to the New Town
	Present the Right Interface
	Distinguish Public from Published Interface
	Deprecate Obsolete Interfaces
	Conserve Familiarity
	Use Profiler Before Optimizing

	Detecting Duplicated Code
	Compare Code Mechanically
	Visualize Code as Dotplots

	Redistribute Responsibilities
	Move Behavior Close to Data
	Eliminate Navigation Code
	Split Up God Class

	Transform Conditionals to Polymorphism
	Transform Self Type Checks
	Transform Client Type Checks
	Factor out State
	Factor out Strategy
	Introduce Null Object
	Transform Conditionals into Registration

	IV Appendices
	Thumbnail patterns
	Testing Patterns
	Retest Persistent Problems
	Test Fuzzy Features
	Test Old Bugs

	Refactorings
	Encapsulate Field
	Extract Method
	Move Method
	Rename Attribute
	Rename Method
	Replace Conditional with Polymorphism

	Design Patterns
	Abstract Factory
	Adapter
	Facade
	Factory Method
	Flyweight
	Null Object
	Quantity
	Singleton
	State
	State Patterns
	Strategy
	Template Method
	Visitor

